• Title/Summary/Keyword: tropical wood

Search Result 59, Processing Time 0.025 seconds

Improvement of Dimensional Stability of Tropical Light-Wood Ceiba pentandra (L) by Combined Alkali Treatment and Densification

  • Deded Sarip NAWAWI;Andita MARIA;Rizal Danang FIRDAUS;Istie Sekartining RAHAYU;Adesna FATRAWANA;Fadlan PRAMATANA;Pamona Silvia SINAGA;Widya FATRIASARI
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.2
    • /
    • pp.133-144
    • /
    • 2023
  • Densification is an effective method for improving the physical and mechanical properties of low-density wood. However, the set-recovery of dimensions was found to be the problem of densified wood due to low fixation during the densification process. Alkali pretreatment before densification is thought to be a modification process to improve the dimensional stability of densified wood. In this research, the wood samples used were boiled in a 1.25 N sodium hydroxide (NaOH) solution at different times, followed by densification for 5 h at 100℃. The alkali pretreatment for 1, 3, and 5 h of boiling increased the dimensional stability of densified woods and anti-swelling efficiency values were 8.52%, 63.24%, and 48.94%, respectively. The boiling of wood in NaOH solution decreased the holocellulose content, as well as lignin to a lesser degree, and a lower crystallinity index was observed. The lower hydroxyl groups and a higher proportion of lignin in treated samples seem to have contributed to the high dimensional stability detected.

Acacia mangium Willd. - A Fast Growing Tree for Tropical Plantation

  • Hegde, Maheshwar;Palanisamy, K.;Yi, Jae Seon
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.1
    • /
    • pp.1-14
    • /
    • 2013
  • Acacia mangium is an evergreen fast-growing tropical tree, which can grow up to 30 m tall and 50 cm thick, under favorable conditions. It is a low-elevation species associated with rain forest margins and disturbed, well-drained acid soils. It is native to Papua, Western Irian Jaya and the Maluku islands in Indonesia, Papua New Guinea and north-eastern Queensland in Australia. Due to its rapid growth and tolerance of very poor soils, A. mangium was introduced into some Asian, African and western hemisphere countries where it is used as a plantation tree. A. mangium has good quality wood traits, such as a comparatively low proportion of parenchymatous cells and vessels, white and hard wood, and high calorific value. Therefore, it is useful for a variety of purposes, such as furniture, cabinets, turnery, floors, particleboard, plywood, veneer, fence posts, firewood, and charcoal. It is also being used in pulp and paper making because it has good pulp traits, with high yields of pulp, quality of kraft, and produces paper with good optical, physical and surface properties. Because there are significant provenance differences in growth rate, stem straightness, heartwood formation and frequency of multiple leaders, the productivity and quality also varies depending upon environmental conditions, so genetic improvement programmes have been undertaken in countries like Australia, India, Indonesia, Malaysia, the Philippines, Taiwan and Thailand. The programme includes provenance identifications and testing, plus tree selection and clonal multiplication, establishment of seed orchards and hybridization. The phenology, reproductive biology, fruit characteristics, silvicultural practices for cultivation, pest and diseases problems, production of improved planting stock, harvesting, wood properties and utilization have been discussed in this paper.

Influences of Forest Fire on Forest Floor and Litterfall in Bhoramdeo Wildlife Sanctuary (C.G.), India

  • Jhariya, Manoj Kumar
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.4
    • /
    • pp.330-341
    • /
    • 2017
  • Tropical forests play a key role for functioning of the planet and maintenance of life. These forests support more than half of the world's species, serve as regulators of global and regional climate, act as carbon sinks and provide valuable ecosystem services. Forest floor biomass and litterfall dynamics was measured in different sites influenced by fire in a seasonally dry tropical forest of Bhoramdeo wildlife sanctuary of Chhattisgarh, India. The forest floor biomass was collected randomly placed quadrats while the litterfall measured by placing stone-block lined denuded quadrat technique. The seasonal mean total forest floor biomass across the fire regimes varied from $2.00-3.65t\;ha^{-1}$. The total litterfall of the study sites varied from $4.75-7.56t\;ha^{-1}\;yr^{-1}$. Annual turnover of litter varied from 70-74% and the turnover time between 1.35-1.43 years. Monthly pattern of forest floor biomass indicated that partially decayed litter, wood litter and total forest floor were differed significantly. The seasonal variation showed that leaf fall differed significantly in winter season only among the fire regimes while the wood litter was found non significant in all the season. This study shows that significant variation among the site due to the forest fire. Decomposition is one of the ecological processes critical to the functioning of forest ecosystems. The decomposing wood serves as a saving account of nutrients and organic materials in the forest floor. Across the site, high fire zone was facing much of the deleterious effects on forest floor biomass and litter production. Control on such type of wildfire and anthropogenic ignition could allow the natural recovery processes to enhance biological diversity. Chronic disturbances do not provide time for ecosystem recovery; it needs to be reduced for ecosystem health and maintaining of the high floral and faunal biodiversity.

Soda and Soda-AQ Pulps Properties from African Tulip Tree (아프리카 튤립으로 제조한 soda 및 soda-AQ 펄프의 특성)

  • Lee, Jai-Sung;Song, Woo-Yong;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.5
    • /
    • pp.85-90
    • /
    • 2015
  • To use the African tulip tree (Spathodea campanulata) as raw material for chemical pulping, soda and soda-AQ pulping was investigated. In chemical compositional analysis, lignin contents of African tulip (33.1%) was higher than other hardwood such as Yellow poplar (17.5%), Acacia (27.1%), or Eucalyptus (24.2%). Soda or soda-AQ pulping with African tulip tree resulted in yield at 43.4-44.8% with 29.5-34.5 Kappa number, pulping condition with 20-22% active alkali. Kappa number of African tulip tree pulp was quite higher than other tropical hardwood (Eucalyptus or Accacia) with less yield due to higher lignin content in wood. Fiber length and width of pulp from African tulip tree was similar to Accacia pulp and shorter than eucalyptus pulp.

Qualitative and Quantitative Anatomical Characteristics of Four Tropical Wood Species from Moluccas, Indonesia

  • Hidayat, Wahyu;Kim, Yun Ki;Jeon, Woo Seok;Lee, Ju Ah;Kim, Ah Ran;Park, Se Hwi;Maail, Rohny S;Kim, Nam Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.369-381
    • /
    • 2017
  • The objective of this study was to compare the wood anatomical characteristics of local tree species in Moluccas, Indonesia i.e., Moluccan ironwood (Intsia bijuga), linggua (Pterocarpus indicus), red meranti (Shorea parvifolia), and gofasa (Vitex cofassus). Qualitative evaluation was conducted by observing the anatomical structure in cross, radial, and tangential sections of each sample. For the quantitative evaluation, the dimensions of vessels, rays, and fibers were measured. Qualitative evaluation showed that crystals were observed in Moluccan ironwood, linggua, and gofasa, while resin canals were only observed in red meranti. Tyloses were frequently observed in gofasa but infrequently observed in linggua and red meranti. Quantitative evaluation showed that Moluccan ironwood with the higher density had thicker fiber wall, higher quantity of ray number, and wider rays than the other species. Red meranti had higher values of ray height and fiber length than the other three species. The results also revealed that linggua showed the highest values of relative crystallinity and crystallite width. Red meranti and gofasa showed similar values of relative crystallinity and crystallite width, while Moluccan ironwood showed the lowest values. The basic qualitative and quantitative anatomical characteristics discussed could provide useful information for further utilizations of such wood species.

New Species of Termitomyces (Lyophyllaceae, Basidiomycota) from Sabah (Northern Borneo), Malaysia

  • Seelan, Jaya Seelan Sathiya;Yee, Chong Shu;Fui, Foo She;Dawood, Mahadimenakbar;Tan, Yee Shin;Kim, Min-Ji;Park, Myung Soo;Lim, Young Woon
    • Mycobiology
    • /
    • v.48 no.2
    • /
    • pp.95-103
    • /
    • 2020
  • The genus Termitomyces (Lyophyllaceae, Basidiomycota) is often associated with fungus-feeding termites (Macrotermitinae) due to their strong symbiotic relationships. The genus is widely found exclusively in certain regions of Africa and Asia. They are recognized as edible mushroom within Southeast Asia as well. But it is often misidentified based on morphology by the local communities especially in Malaysia for Chlorophyllum molybdites which is a highly poisonous mushroom. Thus, it is necessary to study the genus for Malaysia with the synergy of using both morphological and molecular identification. In this study, we aim to describe another new species as an addition to the genus Termitomyces found within Sabah, Malaysia. We generated two new sequences (nrLSU and mtSSU) for the new species and a total of 28 nrLSU and mtSSU sequences were retrieved from GenBank for the phylogenetic analysis using maximum likelihood and Bayesian inferences. We identified that the new collection from Sabah province is a new species and named as Termitomyces gilvus based on the termites found in the mound. A phylogeny tree made from the concatenated genes of LSU and mtSSU suggests that T. gilvus is closely related to T. bulborhizus from China. According to our results, the combination of molecular and morphology proved to be a robust approach to re-evaluate the taxonomic status of Termitomyces species in Malaysia. Additional surveys are needed to verify the species diversity and clarify their geographic distribution.

The Equilibrium Moisture Content - Relative Humidity Relationship of Tropical Woods (관계습도(關係濕度)와 목재(木材)의 평형함수량(平衡含水量)과의 관계(關係)에 대(對)한 연구(硏究))

  • Shim, Chong-Supp
    • Journal of the Korean Wood Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.4-12
    • /
    • 1982
  • 1. Under the request of the Dept. of Navy, U.S.A. this investigation has been done as a part work of the Navy Research Project of Tropical Woods at the Wood Technology Laboratory, School of Forestry, Yale University, New Haven, Conn., U.S.A. 2. In order to determine the equilibrium moisture content and hysteresis loop of three tropical woods (Ocotea, Tablebuia, and Hymenaea) which have not been tested the physical properties, this investigation has made with small thin specimens (1.5"${\times}$1.0${\times}$0.4) under four different controlled relative humidity conditions (that is, 21%, 53%, 60%, and 83%). 3. As the result, the equilibrium moisture content and hysteresis loop of three tropical woods have been shown in the Table and Figures 2, 3 and 4. 4. According to the results, it is concluded that there are the considerable differences in the equilibrium moisture content under the same relative humidity condition and the type of hysteresis loop between different species which have been tested. 5. Desorption of lumber with slightly oscillating humidity of each species tested, has shown on the Table 9 and it has almost the same tendency of results showing the difference between species as the small specimen. 6. Although it is hard to compare the difference of results, E.M.C., and hysteresis between tropical wood and woods from temperate zone, there are, however, still some difference between species. 7. The author wishes to acknowledge my indebtedness to Prof. Wangaard, and Prof. Dickinson for the competent guidance and good advice on this study, and also to Mr. Clanchs for the help in getting materials for the experiment.

  • PDF

Suitability Analyses of Domestic Hardwoods as Furniture Parts (국산(國産) 활엽수재(闊葉樹材)의 가구부재(家具部材) 이용(利用) 타당성(妥當性) 분석(分析))

  • Kim, Gyu-Hyeok;Kim, Jin-Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.24-29
    • /
    • 1999
  • A model to classify domestic hardwood species for furniture applications was developed by using discriminant analysis. The results indicated that among those 36 domestic hardwoods, which have the desired properties for use in furniture parts, 15 species would possibly substitute for temperate hardwoods imported from North America and 21 species for tropical hardwoods imported from southeast Asia and western Africa.

  • PDF

Economical Feasibility of Cultivation under Structure Due to the Introduction of New and Renewable Energy -Comparative Analysis of Wood-Pellet, Geothermal Heat and Diesel- (신재생에너지 도입에 따른 시설재배의 경제성 분석 -목재팰릿, 지열과 경유의 비교분석을 중심으로-)

  • Kim, Hyung Woo;Yoon, Sung-Yee
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.2
    • /
    • pp.255-268
    • /
    • 2014
  • We are now currently facing serious climate changes such as super typhoon, flood, intense heat, severe cold, super hurricane, drought, desertification, destruction of ecosystem, marine pollution, reduction of food production, destruction of tropical forests, exhaustion of water resources, climate refugees, etc. All of the above mainly derive from greenhouse gas exhaustion. Such harmful consequence might directly affect mankind's sustainable development. If we keep using resources that emits greenhouse gases, the global temperature will rise about $3.2^{\circ}C$ by year 2050. In case of $3^{\circ}C$ rise in temperature, it will result in abnormal climate which will bring about severe property damage. Moreover, 20~50% of the ecosystem will become extinct. As Korea's economy increasingly expands, so do our energy consumption rises. And because of the consequences that can be driven by increasing rate of resource use, not just Korea itself, but also the whole world should seriously concern about greenhouse gases. Although agricultural division only takes up about 3.2% of total greenhouse gas emission, the ministry of Agriculture, Food and Rural Affairs are taking voluntary actions to gradually reduce $CO_2$ and so does each and every related organizations. In order to reduce $CO_2$, introduction of new and renewable energy in farm house warming is crucial. In other words, implementing wood-pellet boiler and geothermal heat boiler can largly reduce $CO_2$ emission compared to diesel boiler. More importantly, not only wood-pellet and geothermal heat is pollution-free but they also have economic advantages some-what. In this thesis, the economic advantage and sustainablity will be introduced and proved through comparing practical analysis of surveyed farm house under structure employing wood-pellet boiler and geothermal heat boiler with Agriculture-Economic Statistic of 2012 who uses diesel boiler.

Assessment of Timber Harvest in Tropical Rainforest Ecosystem of South West Nigeria and Its Implication on Carbon Sequestration

  • Adekunle, Victor A.;Lawal, Amadu;Olagoke, Adewole O.
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • Timber harvest in natural forests and its implications on carbon sequestration were investigated in the Southwestern Nigeria. Data on timber harvest from forest estates for a 3-year period were collected from the official record of States' Forestry Department. The data registered the species, volume and number of timbers exploited during the study period. The data were analyzed accordingly for rate of timber harvest and carbon value of the exploited timbers using existing biomass functions. Values were compared for significant differences among states using one way analysis of variance. The results showed that the most exploited logs, in terms of volume and number of trees, have the highest amount of carbon removal. There was a variation in type of timber species being exploited from each state. The total number of harvested trees from Oyo, Ondo, Ogun, Ekiti and Osun were estimated at 100,205; 111,789; 753; 15,884 and 18,153 respectively. Total quantity of carbon removed for the 3-year period stood at 2.3 million metric tons, and this translated to 8.4 million metric tons of $CO_2$. The annual carbon and $CO_2$ removal therefore were estimated at 760,120.73 tons and 2.8 million tons/ year respectively. There were significant differences (p<0.05) in the amount of $CO_2$ removed from the five states. Based on our result, we inferred that there is increasing pressure on economic tree species and it is plausible that they are becoming scarce from the forests in Southwestern Nigeria.. If the present rate of log removal is not controlled, forests could become carbon source rather than carbon sink and the on biological conservation, wood availability and climate change may turn out grave. For the forest to perform its environmental role as carbon sink, urgent conservation measures and logging policies are needed to be put in place.