• Title/Summary/Keyword: tropical region

Search Result 401, Processing Time 0.02 seconds

Mapping of the Complement C9 Binding Region on Clonorchis sinensis Paramyosin

  • Kang, Jung-Mi;Le, Huong Giang;Vo, Tuan Cuong;Yoo, Won Gi;Sohn, Woon-Mok;Na, Byoung-Kuk
    • Parasites, Hosts and Diseases
    • /
    • v.60 no.4
    • /
    • pp.255-259
    • /
    • 2022
  • Heliminthic paramyosin is a multifunctional protein that not only acts as a structural protein in muscle layers but as an immune-modulatory molecule interacting with the host immune system. Previously, we found that paramyosin from Clonorchis sinensis (CsPmy) is bound to human complement C9 protein (C9). To analyze the C9 binding region on CsPmy, overlapping recombinant fragments of CsPmy were produced and their binding activity to human C9 was investigated. The fragmental expression of CsPmy and C9 binding assays revealed that the C9 binding region was located at the C-terminus of CsPmy. Further analysis of the C-terminus of CsPmy to narrow the C9 binding region on CsPmy indicated that the region flanking 731Leu-780Leu was a potent C9 binding region. The CsPmy fragments corresponding to the region effectively inhibited human C9 polymerization. These results provide a precise molecular basis for CsPmy as a potent immunomodulator to evade host immune defenses by inhibiting complement attack.

Dendroclimatological Investigation of High Altitude Himalayan Conifers and Tropical Teak In India

  • Borgaonkar, H.P.;Sikder, A.B.;Ram, Somaru;Kumar, K. Rupa;Pant, G.B.
    • The Korean Journal of Quaternary Research
    • /
    • v.21 no.1
    • /
    • pp.15-26
    • /
    • 2007
  • A wide tree-ring data network from Western Himalayan region as well as from Central and Peninsular India have been established by the Indian Institute of Tropical Meteorology (IITM), Pune, India. This includes several ring width and density chronologies of Himalayan conifers (Pinus, Picea, Cedrus, Abies)covering entire area of Western Himalaya and teak (Tectona grandis L.F.) from central and peninsular India. Many of these chronologies go back to $15^{th}$ century. Tree-ring based reconstructed pre-monsoon (March-April-May) summer climate of Western Himalaya do not show any significant increasing or decreasing trend since past several centuries. High altitude tree-ring chronologies near tree line-glacier boundary are sensitive to the winter temperature. Unprecedented higher growth in recent decades is closely associated with the warming trend over the Himalayan region. Dendroclimatic analysis of teak (Tectona grandis) from Central and Peninsular India show significant relationship with pre-monsoon and monsoon climate. Moisture index over the region indicates strong association with tree-ring variations rather than the direct influence of rainfall. It is evident that, two to three consecutive good monsoon years are capable of maintaining normal or above normal tree growth, even though the following year is low precipitation year.

  • PDF

Characteristics of Tropical Cyclone Activity Influenced by Decadal Variability of SST (해수면 온도의 10년 주기 변동에 영향을 받는 Tropical Cyclone의 특징)

  • Kim, Dong-Hyeok;Kang, In-Sik
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.485-492
    • /
    • 2008
  • This study confirms that a decadal variation of the SST (Sea Surface Temperature) in the WNP (Western North Pacific) has an influence on the genesis and passage ofa Tropical Cyclone. The decadal mode was obtained by calculating the SST anomaly on the domain $150^{\circ}E-190^{\circ}E$, and $5^{\circ}S-5^{\circ}N$. Such decadal variation was subsequently analyzed to confirm that it is a dominant mode in central Pacific region. Next, after classifying the years into relatively positive years and relatively negative years, the characteristics of Tropical Cyclone in each year, such as a genesis and passage frequency, were investigated. Compared to the relatively negative years, during the relatively positive years, the location of Tropical Cyclone genesis was biased toward South-Eastern region, while the characteristics of the cyclone were more distinct during late season of the year trom September to December than in mid season from June to August. Examining the movement passage through the observation of passage fiequency, there was a significant difference between positive year and negative year in their passages at a 90% confidence level. Moreover, the number of Tropical Cyclone, maximum wind, and life time also showed higher values in positive years than in negative years. These features were confirmed by examining the 850hPa cyclonic flow field, vorticity field, and vertical wind shear field, all of which contribute to the genesis of a Tropical Cyclone.

Non-Conventional Roughages in Tropical and Sub-Tropical Asian-Australasian Countries - Review -

  • Nitis, I.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.3
    • /
    • pp.449-459
    • /
    • 1999
  • Non-conventional roughage (NCR) is shrub and tree fodders, crop residues and agroindustrial oy-products which is not commonly used as livestock feed traditionally and commercially. Eventhough many sources of NCR is available, the farmers perceptions on NCR not only vary from country to country in tropical and sub-tropical Asian-Australasian countries, but also vary from region to region within the country. Chemical composition and nutritive value of NCR are not only vary from species to species but also vary between species within the genera, between provenances/cultivars within the species and such variations are affected by season, climatic zone, topography and land utilization. The nutritive value of NCR can be improved by physical, chemical and biological treatments and conservation. Feeding NCR to ruminant and non-ruminant is not only improve performance of the livestock but also economically feasible. Future direction of NCR is inventarization, exchange information through NCR information centre, integration with either agrisilvicultural, agrisilvipastoral or silvipastoral system, and use of genetic engineering to produce high quality NCR that ultimately become conventional roughage for agroindustry and agribissiness.

Observational analysis of wind characteristics in the near-surface layer during the landfall of Typhoon Mujigae (2015)

  • Lin Xue;Ying Li;Lili Song
    • Wind and Structures
    • /
    • v.37 no.4
    • /
    • pp.315-329
    • /
    • 2023
  • We investigated the wind characteristics in the near-surface layer during the landfall of Typhoon Mujigae (2015) based on observations from wind towers in the coastal areas of Guandong province. Typhoon Mujigae made landfall in this region from 01:00 UTC to 10:00 UTC on October 4, 2015. In the region influenced by the eyewall of the tropical cyclone, the horizontal wind speed was characterized by a double peak, the wind direction changed by >180°, the vertical wind speed increased by three to four times, and the angle of attack increased significantly to a maximum of 7°, exceeding the recommended values in current design criteria. The vertical wind profile may not conform to a power law distribution in the near-surface layer in the region impacted by the eyewall and spiral rainband. The gust factors were relatively dispersed when the horizontal wind speed was small and tended to a smaller value and became more stable with an increase in the horizontal wind speed. The variation in the gust factors was the combined result of the height, wind direction, and circulation systems of the tropical cyclone. The turbulence intensity and the downwind turbulence energy spectrum both increased notably in the eyewall and spiral rainband and no longer satisfied the assumption of isotropy in the inertial subrange and the -5/3 law. This result was more significant in the eyewall area than in the spiral rainband. These results provide a reference for forecasting tropical cyclones, wind-resistant design, and hazard prevention in coastal areas of China to reduce the damage caused by high winds induced by tropical cyclones.

First Record of the Pacific Fanfish Pteraclis aesticola (Jordan and Snyder, 1901) in the Tropical Eastern Pacific

  • Aguero, Jose De La Cruz;Gomez, Victor Manuel Cota
    • Ocean Science Journal
    • /
    • v.43 no.3
    • /
    • pp.161-164
    • /
    • 2008
  • One specimen of Pteraclis aesticola was collected off San Jose del Cabo, Baja California Sur, Mexico ($22^{\circ}54'N$, $109^{\circ}45'W$), in March 2007. Present record is the first reported occurrence of the species in the Tropical Eastern Pacific biogeographic region (Gulf of California to southern Ecuadorian waters). Its large fan-like anal and dorsal fins and its counts of fin rays and vertebrae can distinguish the Pacific fanfish from the other species in the genus. This fish may have not yet been recorded in the region because its presence has been overlooked in the past because of rarity and lack of commercial value.

Detection and genotyping of Giardia intestinalis isolates using intergenic spacer (IGS)-based PCR

  • Lee, Jong-Ho;Lee, Jong-Weon;Park, Soon-Jung;Yong, Tai-Soon;Hwang, Ui-Wook
    • Parasites, Hosts and Diseases
    • /
    • v.44 no.4 s.140
    • /
    • pp.343-353
    • /
    • 2006
  • Giardia intestinalis infections arise primarily from contaminated food or water Zoonotic transmission is possible, and at least 7 major assemblages including 2 assemblages recovered from humans have been identified. The determination of the genotype of G. intestinalis is useful not only for assessing the correlation of clinical symptoms and genotypes, but also for finding the infection route and its causative agent in epidemiological studies. In this study, methods to identify the genotypes more specifically than the known 2 genotypes recovered from humans have been developed using the intergenic spacer (IGS) region of rDNA. The IGS region contains varying sequences and is thus suitable for comparing isolates once they are classified as the same strain. Genomic DNA was extracted from cysts isolated from the feces of 5 Chinese, 2 Laotians and 2 Koreans infected with G. intestinalis and the trophozoites of WB, K1, and GS strains cultured in the laboratory, respectively. The rDNA containing the IGS region was amplified by PCR and cloned. The nucleotide sequence of the 3' end of IGS region was determined and examined by multiple alignment and phylogenetic analysis. Based on the nucleotide sequence of the IGS region, 13 G. intestinalis isolates were classified to assemblages A and B, and assemblage A was subdivided into A1 and A2. Then, the primers specific to each assemblage were designed, and PCR was peformed using those primers. It detected as little as 10 pg of DNA, and the PCR amplified products with the specific length to each assemblage (A1, 176bp; A2, 261 bp; B, 319 bp) were found. The PCR specific to 3 assemblages of G. intestinalis did not react with other bacteria or protozoans, and it did not react with G. intestinalis isolates obtained from dogs and rats. It was thus confirmed that by applying this PCR method amplifying the IGS region, the detection of G. intestinalis and its genotyping can be determined simultaneously.

Climate Events and Cycles During the Last Glacial-Interglacial Transition

  • Lee, Eun Hee;Lee, Dae-Young;Park, Mi-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.207-212
    • /
    • 2017
  • During the last glacial-interglacial transition, there were multiple intense climatic events such as the Bølling-Allerød warming and Younger Dryas cooling. These events show abrupt and rapid climatic changes. In this study, the climate events and cycles during this interval are examined through wavelet analysis of Arctic and Antarctic ice-core $^{18}O$ and tropical marine $^{14}C$ records. The results show that periods of ~1383-1402, ~1029-1043, ~726-736, ~441-497 and ~202-247 years are dominant in the Arctic region, whereas periods of ~1480, ~765, ~518, ~311, and ~207 years are prominent in the Antarctic TALDICE. In addition, cycles of ~1019, ~515, and ~209 years are distinct in the tropical region. Among these variations, the de Vries cycle of ~202-209 years, correlated with variations in solar activity, was detected globally. In particular, this cycle shows a strong signal in the Antarctic between about 13,000 and 10,500 yr before present (BP). In contrast, the Eddy cycle of ~1019-1043 years was prominent in Greenland and the tropical region, but was not detected in the Antarctic TALDICE records. Instead, these records showed that the Heinrich cycle of ~1480 year was very strong and significant throughout the last glacial-interglacial interval.

Characteristics of the Gross Moist Stability in the Tropics and Its Future Change (열대 지역 Gross Moist Stability 특징 분석 및 미래 변화)

  • Kim, Hye-Won;Seo, Kyong-Hwan
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.141-150
    • /
    • 2014
  • This study investigates the characteristics of the Gross Moist Stability (GMS) over the tropics. The GMS summarizes the relationship between large-scale entropy forcing due to radiation and surface fluxes and the response of smaller-scale convection. The GMS is able to explain both to where moist entropy is advected by the atmospheric circulation and how deep the moisture flux convergence is in the tropical region. In the deep convective region, positive GMS appears over the warm pool region due to the strong column-integrated moisture convergence and the ensuing export of moist entropy to the environment. The vertical advection of moist entropy dominates over the horizontal advection in this region. Meanwhile, over the eastern tropical ITCZ region, which is characterized by shallow convective area, import of moist entropy by horizontal winds is dominant compared to the vertical moist entropy advection. Future changes in the GMS are also examined using the 22 CMIP5 model simulations. A decrease in the GMS appears widely across the tropics, but its increase occurs over the western-central equatorial Pacific. It is evident that the increased GMS region corresponds to an increased region of precipitation, implying that strengthened convection in the future due to increased entropy forcing exports the enhanced moist energy to stabilize the environment.