• 제목/요약/키워드: trophoblast

검색결과 69건 처리시간 0.021초

Neuronal Nitric Oxide-mediated Cytotoxicity in Trophoblast Cells Induced by Increase of Intracellular Calcium

  • Shin, Mi-Kyung;Kwon, Yong-Hyun;Shin, Jong-Chul;Yang, Dong-Eun;Lee, Sung-Keun;Kang, Ju-Hee;Park, Chang-Shin
    • Molecular & Cellular Toxicology
    • /
    • 제4권1호
    • /
    • pp.16-21
    • /
    • 2008
  • Cell death of trophoblast, particularly by abnormal release of physiological nitric oxide (NO) has been known to be a causative factor of pre-eclampsia. In the present study, effects of intracellular calcium increase enhancing the activity of NO synthases (neuronal NO synthase, nNOS in this trophoblast cells) on the cell death were examined in a human placental full-term cell line (HT-1). Furthermore, we analyzed the possible mechanisms underlying the augmentation of $Ca^{++}$-mediated NOS activity mediated by protein kinases like PKC, PKA, or CaM-KII. In experiments for cell toxicity, a calcium ionophore (ionomycin $10{\mu}M$) enhanced cell death confirmed by MTT assay, and increased significantly nNOS activity determined with a hemoglobin oxidation assay. This cell death was partially protected by pre-treatment of 7-nitroindazole (7-NI, $10{\mu}M$ and $100{\mu}M$), a nNOS-specific inhibitor. Additionally, $Ca^{++}$-ionophore -induced increase of nNOS activity also was partially normalized by pre-treatment of specific inhibitors of protein kinases, PKC, PKA or CaM-KII. Therefore, we suggest that an increase of calcium influx, leading to the activation of nNOS activity, which in turn may result in the death of trophoblast cells by involvement of signaling mechanisms of protein kinases.

Effects of selenium on the survival and invasion of trophoblasts

  • Na, Jee Yoon;Seok, Jin;Park, Sohae;Kim, Jung Seok;Kim, Gi Jin
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제45권1호
    • /
    • pp.10-16
    • /
    • 2018
  • Objective: Placental oxidative stress is known to be a factor that contributes to pregnancy failure. The aim of this study was to determine whether selenium could induce antioxidant gene expression and regulate invasive activity and mitochondrial activity in trophoblasts, which are a major cell type of the placenta. Methods: To understand the effects of selenium on trophoblast cells exposed to hypoxia, the viability and invasive activity of trophoblasts were analyzed. The expression of antioxidant enzymes was assessed by reverse-transcription polymerase chain reaction. In addition, the effects of selenium treatment on mitochondrial activity were evaluated in terms of adenosine triphosphate production, mitochondrial membrane potential, and reactive oxygen species levels. Results: Selenium showed positive effects on the viability and migration activity of trophoblast cells when exposed to hypoxia. Interestingly, the increased heme oxygenase 1 expression under hypoxic conditions was decreased by selenium treatment, whereas superoxide dismutase expression was increased in trophoblast cells by selenium treatment for 72 hours, regardless of hypoxia. Selenium-treated trophoblast cells showed increased mitochondrial membrane potential and decreased reactive oxygen species levels under hypoxic conditions for 72 hours. Conclusion: These results will be used as basic data for understanding the mechanism of how trophoblast cells respond to oxidative stress and how selenium promotes the upregulation of related genes and improves the survival rate and invasive ability of trophoblasts through regulating mitochondrial activity. These results suggest that selenium may be used in reproductive medicine for purposes including infertility treatment.

Trophoblast Cell Subtypes and Dysfunction in the Placenta of Individuals with Preeclampsia Revealed by Single-Cell RNA Sequencing

  • Zhou, Wenbo;Wang, Huiyan;Yang, Yuqi;Guo, Fang;Yu, Bin;Su, Zhaoliang
    • Molecules and Cells
    • /
    • 제45권5호
    • /
    • pp.317-328
    • /
    • 2022
  • Trophoblasts, important functional cells in the placenta, play a critical role in maintaining placental function. The heterogeneity of trophoblasts has been reported, but little is known about the trophoblast subtypes and distinctive functions during preeclampsia (PE). In this study, we aimed to gain insight into the cell type-specific transcriptomic changes by performing unbiased single-cell RNA sequencing (scRNA-seq) of placental tissue samples, including those of patients diagnosed with PE and matched healthy controls. A total of 29,006 cells were identified in 11 cell types, including trophoblasts and immune cells, and the functions of the trophoblast subtypes in the PE group and the control group were also analyzed. As an important trophoblast subtype, extravillous trophoblasts (EVTs) were further divided into 4 subgroups, and their functions were preliminarily analyzed. We found that some biological processes related to pregnancy, hormone secretion and immunity changed in the PE group. We also identified and analyzed the regulatory network of transcription factors (TFs) identified in the EVTs, among which 3 modules were decreased in the PE group. Then, through in vitro cell experiments, we found that in one of the modules, CEBPB and GTF2B may be involved in EVT dysfunction in PE. In conclusion, our study showed the different transcriptional profiles and regulatory modules in trophoblasts between placentas in the control and PE groups at the single-cell level; these changes may be involved in the pathological process of PE, providing a new molecular theoretical basis for preeclamptic trophoblast dysfunction.

Hypoxia에 의한 X-linked Inhibitor of Apoptosis 발현이 태반 내 영양막세포의 세포자멸사에 미치는 영향 (Effect of Hypoxia-induced XIAP Expression on Apoptosis of Trophoblast Cells in Placenta)

  • 이종성;전수연;최종호;이유진;차동현;김기진
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제37권3호
    • /
    • pp.217-229
    • /
    • 2010
  • 목 적: 영양막세포의 과도한 세포자멸사는 태반의 발달뿐 아니라 산과 질환을 유발하는 요인으로 알려져 있다. X-linked inhibitor of apoptosis (XIAP)은 임신 기간 동안 영양막세포의 세포자멸사와 관련되어 있다고 알려져 있으나, 자간전증을 유발하는 인자인 저산소성과의 관계에 관한 연구는 미흡한 실정이다. 본 연구의 목적은 XIAP가 정상 태반과 자간전증 산모의 태반에서 발현 양상의 차이를 분석하고, 저산소 상태에 노출된 HTR-8/SVneo 영양막세포주에서의 XIAP 기능을 분석하고자 하였다. 연구방법: XIAP 발현을 분석하고자, 정상 태반 (n=15), 중기 자간전증 태반 (n=11), 그리고 말기 자간전증 태반 (n=15) 조직을 수집하여 RT-PCR, 면역조직화학법, 그리고 Western blot 등을 실시하였다. 저산소성 상태에서 XIAP의 기능을 확인하고자 HTR-8/SVneo 영양막세포주에 1% 산소가 공급되는 hypoxia 상태에 노출시킨 뒤 12시간, 24시간 후에 각 세포자멸사 관련 유전자들의 발현을 fluorescence-activated cell sorting (FACS)와 Western blot 분석 등을 실시하였다. 결 과: XIAP는 태반의 합포영양막세포와 포합체결절에서 발현이 관찰되었으며, 정상 태반보다 자간전증 태반에서의 발현이 현저히 감소됨이 관찰되었다 (p<0.05). 또한, 저산소 상태에 노출된 HTR-8/SVneo 영양막세포주에서 감소된 XIAP 발현은 세포질에서 핵으로의 이동에 따라 세포자멸사를 유발하는 단백질들의 발현이 증가됨이 관찰되었다. 결 론: XIAP의 발현은 태반 발달 및 자간전증 태반에서 XIAP 유전자의 발현은 감소되었으며, XIAP의 저하로 인한 caspase-9의 증가가 자간전증 태반에서의 세포자멸사는 더 많이 유도되었음을 확인할 수 있었다. 또한, 저산소 상태에 의해 XIAP의 발현이 감소되었으며, XIAP 단백질의 세포질에서 핵으로의 위치 변화는 영양막세포의 세포자멸사에 중요한 역할을 하는 것이 관찰되었고, 이는 자간전증의 진단에 유용한 마커로써의 활용되기 위한 기본적인 자료로 활용될 수 있을 것으로 판단된다.

태반 내 Immortalization-upregulated Proteins-2 (IMUP-2) 발현 (Expression of Immortalization-upregulated Proteins-2 (IMUP-2) in Placenta)

  • 전수연;이현정;정현민;김진경;김기진
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제36권3호
    • /
    • pp.163-174
    • /
    • 2009
  • 목 적: Immortalization-upregulated proteins (IMUPs) family는 SV40의 유전자 도입을 통한 불사화된 인간 섬유아세포에서 새로이 분리 동정된 핵 내 단백질로써, 세포의 증식과 종양형성에 관여하는 것으로 알려져 있으나, 태반 발달과정에 따른 발현 양상과 기능에 대해서는 알려져 있지 않은 실정이다. 본 연구의 목적은 정상 태반과 자간전증 태반조직에서의 IMUPs 유전자의 발현을 분석하고, IMUPs 유전자의 HTR-8/SVneo trophoblast cells 내로 도입 후 IMUPs의 기능을 분석하고자 하였다. 연구방법: IMUPs 발현을 분석하고자, 정상 태반 (n=15), 중기 자간전증 태반 (n=11), 그리고 말기 자간전증 태반 (n=15)조직을 수집하여 RT-PCR, RNA in situ hybridization, 면역조직화학법, 그리고 Western blot 등을 실시하였다. IMUP-2의 기능을 확인하고자 HTR-8/SVneo trophoblast cells에 IMUP-2 plasmids를 transfection한 뒤 24시간 후에 각 그룹간의 세포 수를 계수하였으며, 세포사멸 관련 유전자들의 발현을 분석하고자 RT-PCR, 그리고 Western blot 분석 등을 실시하였다. 결 과: IMUPs는 주로 태반 내 합포영양막세포와 포합체결절에서 주로 발현되었다. IMUP-1의 경우 정상과 자간전증 태반에서의 발현의 차이가 관찰되지 않았으나, IMUP-2의 경우 정상 태반에서 매우 약한 발현을 보였으며, 자간전증에서는 발현의 증가가 통계학적으로 유의하게 관찰되었으며 (p<0.001), 특히, 중기 자간전증의 태반조직 내에서는 강한 발현이 관찰되었다. 또한, IMUP-2의 유전자 도입에 의해 과발현된 HTR-8/SVneo trophoblast cells에서는 세포사멸 관련 유전자들의 증가로 영양막세포의 수가 감소됨이 관찰되었다. 결 론: 이러한 결과들은 IMUP-2의 발현이 정상 태반의 발달에 관여할 뿐 아니라 증가된 IMUP-2는 영양막세포의 세포사멸을 증가시킴으로써 자간전증과도 상관성이 있음이 관찰되었다. 따라서, IMUP-2는 자간전증을 예측 및 진단 할 수 있는 마커로 유용하게 활용 가능하다고 사료된다.

영양막세포에서의 C-reactive protein 조절 microRNA-150과 microRNA-424 발현 분석 (Expressions of MicroRNA-150 and MicroRNA-424 Targeted to C-reactive Protein in Trophoblast Cell Line)

  • 김희성
    • 한국콘텐츠학회논문지
    • /
    • 제19권11호
    • /
    • pp.375-382
    • /
    • 2019
  • 임신 초기 염증으로 인한 영양막세포의 기능 이상은 C-reactive protein (CRP)의 발현을 증가시켜 산모와 태아의 상호작용에 영향을 미침으로써, 조산 및 자간전증 등을 유발한다. 그러나, CRP 발현 조절과 관련된 생체표지자 발굴 및 개발은 미흡한 실정이다. 본 연구는 염증이 유발된 영양막세포에서 증가된 CRP 발현과 관련된 miRNA를 발굴 및 그 발현을 분석함으로써, miRNA를 통해 영양막세포 염증 조절 기전에 관여하는 생체표지자를 밝히고자 한다. miRNA 데이터베이스(mirna, TargetScan, MicroCosm)에서 공통적으로 CRP 유전자 발현을 조절할 것으로 예측되는 miR-7, miR-150, miR-186, 그리고 miR-424를 선별하여 HTR-8/SVneo에 LPS (20ng/mL)를 처리하여 in vitro 상에서 염증 반응을 유도하였다. 각각의 miRNAs의 발현을 qRT-PCR 방법으로 비교 분석하였다. 그 결과, LPS 처리된 영양막세포에서 CRP의 발현은 유의성 있게 증가되었다(p<0.001). miR-150와 miR-424는 발현이 유의성 있게 감소됨을 확인하였다(p<0.001). 따라서, 염증이 유도된 영양막세포에서의 CRP 발현을 조절하는 기전에 miR-150와 miR-424가 관여하는 것을 의미하며, 향후 염증성 산과질환의 산전 진단에 유용한 자료로 사용될 것으로 사료된다.

반복유산을 경험한 환자에서 임신중 태반항원과 동종항원에 노출된 모체 림프구면역반응은 언제부터 소실되나? (When Dose Losses of Maternal Lymphocytes Response to Trophoblast Antigen or Alloantigen Occur in Women with a History of Recurrent Spontaneous Abortion?)

  • 최범채
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제25권2호
    • /
    • pp.115-122
    • /
    • 1998
  • The maintenance of a viable pregnancy has long been viewed as an immunological paradox. The deveolping embryo and trophoblast are immunologically foreign to the maternal immune system due to their maternally inherited genes products and tissue-specific differentiation antigens (Hill & Anderson, 1988). Therefore, speculation has arisen that spontaneous abortion may be caused by impaired maternal immune tolerance to the semiallogenic conceptus (Hill, 1990). Loss of recall antigen has been reported in immunosuppressed transplant recipients and is associated with graft survival (Muluk et al., 1991; Schulik et al., 1994). Progesterone $(10^{-5}M)$ has immunosuppressive capabilities (Szekeres-Bartho et al., 1985). Previous study showed that fertile women, but not women with unexplained recurrent abortion (URA), lose their immune response to recall antigens when pregnant (Bermas & Hill, 1997). Therefore, we hypothesized that immunosuppressive doses of progesterone may affect proliferative response of lymphocytes to trophoblast antigen and alloantigen. Proliferative responses using $^3H$-thymidine ($^3H$-TdR) incorporation of peripheral blood mononuclear cells (PBMCs) to the irradiated allogeneic periperal blood mononuclear cells as alloantigen, trophoblast extract and Flu as recall antigen, and PHA as mitogen were serially checked in 9 women who had experienced unexplained recurrent miscarriage. Progesterone vaginal suppositories (100mg b.i.d; Utrogestan, Organon) beginning 3 days after ovulation were given to 9 women with unexplained RSA who had prior evidence of Th1 immunity to trophoblast. We checked proliferation responses to conception cycle before and after progesterone supplementation once a week through the first 7 weeks of pregnancy. All patients of alloantigen and PHA had a positive proliferation response that occmed in the baseline phase. But 4 out of 9 patients (44.4%) of trophoblast antigen and Flu antigen had a positive proliferative response. The suppression of proliferation response to each antigen were started after proliferative phase and during pregnancy cycles. Our data demonstrated that since in vivo progesterone treated PBMCs suppressed more T-lymphocyte activation and $^3H$-TdR incorporation compare to PBMCs, which are not influenced by progesterone. This data suggested that it might be influenced by immunosuppressive effect of progesterone. In conclusion, progesterone may play an important immunological role in regulating local immune response in the fetal-placental unit. Furthermore, in the 9 women given progesterone during a conception cycle, Only two (22%) repeat pregnancy losses occured in these 9 women despite loss of antigen responsiveness (one chemical pregnancy loss and one loss at 8 weeks of growth which was karyotyped as a Trisomy 4). These finding suggested that pregnancy loss due to fetal aneuploidy is not associated with immunological phenomena.

  • PDF

Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Activates Pro-Survival Signaling Pathways, Nuclear Factor-${\kappa}B$ and Extracellular Signal-Regulated Kinase 1/2 in Trophoblast Cell Line, JEG-3

  • Ka Hakhyun
    • Reproductive and Developmental Biology
    • /
    • 제29권2호
    • /
    • pp.101-108
    • /
    • 2005
  • Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) is a well-known inducer of apoptotic cell death in many tumor cells. 1RAIL is expressed in human placenta, and cytotrophoblast cells express 1RAIL receptors. However, the role of TRAIL in human placentas and cytotrophoblast cells is not. well understood. In this study a trophoblast cell line, JEG-3, was used as a model system to examine the effect of TRAIL. on key intracellular signaling pathways involved in the control of trophoblastic cell apoptosis and survival JEG-3 cells expressed receptors for 1RAIL, death receptor (DR) 4, DR5, decoy receptor (OcR) 1 and DeR2. Recombinant human TRAIL (rhTRAIL) did not have a cytotoxic effect determined by MIT assay and did not induce apoptotic cell death determined by poly-(ADP-ribose) polymerase cleavage assay. rhTRAIL induced a rapid and transient nuclear translocation of nuclear $factor-{\kappa}B(NF-{\kappa}B)$ determined by immunoblotting using nuclear protein extracts. rhTRAIL rapidly activated extracellular signal-regulated protein kinase (ERK) 1/2 as determined by immnoblotting for phospho-ERK1/2. However, c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38MAPK) and Akt (protein kinase B) were not activated by rhTRAIL. The ability of 1RAIL to induce $NF-{\kappa}B$ and ERK1/2 suggests that interaction between TRAIL and its receptors may play an important role in trophoblast cell function during pregnancy.

Expression of Progranulin in Early and Late Gestation Human Placentas

  • Ka Hak-Hyun
    • Reproductive and Developmental Biology
    • /
    • 제30권2호
    • /
    • pp.107-113
    • /
    • 2006
  • Development of placenta is a complex process that is critical for the pregnancy and controlled by many factors including cytokines, hormones, growth factors and apoptotic molecules. Recently, it has been shown that progranulin (PGRN) functions in growth of embryo and trophectoderm as well as cell migration. To initiate understanding the role of PGRN in human placental development, we investigated the expression of PGRN mRNA and protein in early and late gestation human placentas, term cytotrophoblast cells and two choriocarcinoma cell lines, JEG-3 and Jar. Reverse transcriptase polymerase chain reaction identified mRNAs derived from the PGRN gene in all samples. Immunoblot analysis showed that PGRN proteins are present in early and late gestation human placentas with decreasing levels over gestation and that PGRN proteins are present in normal and transformed trophoblast cells. Immunohistochemical analysis using paraformaldehyde-fixed tissue sections taken from early and late stages of pregnancy showed that PGRN proteins are present in cytotrophoblast cells, syncytiotrophoblast and extravillous cytotrophoblast cells and that expression pattern of PGRN differed according to the stage of cell differentiation. The results of this study are consistent with the hypothesis that PGRN proteins have critical roles in placental development and suggest that PGRN may function in trophoblast cell growth and differentiation.

The role of autophagy in the placenta as a regulator of cell death

  • Gong, Jin-Sung;Kim, Gi Jin
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제41권3호
    • /
    • pp.97-107
    • /
    • 2014
  • The placenta is a temporary fetomaternal organ capable of supporting fetal growth and development during pregnancy. In particular, abnormal development and dysfunction of the placenta due to cha nges in the proliferation, differentiation, cell death, and invasion of trophoblasts induce several gynecological diseases as well as abnormal fetal development. Autophagy is a catalytic process that maintains cellular structures by recycling building blocks derived from damaged microorganelles or proteins resulting from digestion in lysosomes. Additionally, autophagy is necessary to maintain homeostasis during cellular growth, development, and differentiation, and to protect cells from nutritional deficiencies or factors related to metabolism inhibition. Induced autophagy by various environmental factors has a dual role: it facilitates cellular survival in normal conditions, but the cascade of cellular death is accelerated by over-activated autophagy. Therefore, cellular death by autophagy has been known as programmed cell death type II. Autophagy causes or inhibits cellular death via the other mechanism, apoptosis, which is programmed cell death type I. Recently, it has been reported that autophagy increases in placenta-related obstetrical diseases such as preeclampsia and intrauterine growth retardation, although the mechanisms are still unclear. In particular, abnormal autophagic mechanisms prevent trophoblast invasion and inhibit trophoblast functions. Therefore, the objectives of this review are to examine the characteristics and functions of autophagy and to investigate the role of autophagy in the placenta and the trophoblast as a regulator of cell death.