• Title/Summary/Keyword: trophoblast

Search Result 69, Processing Time 0.024 seconds

Neuronal Nitric Oxide-mediated Cytotoxicity in Trophoblast Cells Induced by Increase of Intracellular Calcium

  • Shin, Mi-Kyung;Kwon, Yong-Hyun;Shin, Jong-Chul;Yang, Dong-Eun;Lee, Sung-Keun;Kang, Ju-Hee;Park, Chang-Shin
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.1
    • /
    • pp.16-21
    • /
    • 2008
  • Cell death of trophoblast, particularly by abnormal release of physiological nitric oxide (NO) has been known to be a causative factor of pre-eclampsia. In the present study, effects of intracellular calcium increase enhancing the activity of NO synthases (neuronal NO synthase, nNOS in this trophoblast cells) on the cell death were examined in a human placental full-term cell line (HT-1). Furthermore, we analyzed the possible mechanisms underlying the augmentation of $Ca^{++}$-mediated NOS activity mediated by protein kinases like PKC, PKA, or CaM-KII. In experiments for cell toxicity, a calcium ionophore (ionomycin $10{\mu}M$) enhanced cell death confirmed by MTT assay, and increased significantly nNOS activity determined with a hemoglobin oxidation assay. This cell death was partially protected by pre-treatment of 7-nitroindazole (7-NI, $10{\mu}M$ and $100{\mu}M$), a nNOS-specific inhibitor. Additionally, $Ca^{++}$-ionophore -induced increase of nNOS activity also was partially normalized by pre-treatment of specific inhibitors of protein kinases, PKC, PKA or CaM-KII. Therefore, we suggest that an increase of calcium influx, leading to the activation of nNOS activity, which in turn may result in the death of trophoblast cells by involvement of signaling mechanisms of protein kinases.

Effects of selenium on the survival and invasion of trophoblasts

  • Na, Jee Yoon;Seok, Jin;Park, Sohae;Kim, Jung Seok;Kim, Gi Jin
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.45 no.1
    • /
    • pp.10-16
    • /
    • 2018
  • Objective: Placental oxidative stress is known to be a factor that contributes to pregnancy failure. The aim of this study was to determine whether selenium could induce antioxidant gene expression and regulate invasive activity and mitochondrial activity in trophoblasts, which are a major cell type of the placenta. Methods: To understand the effects of selenium on trophoblast cells exposed to hypoxia, the viability and invasive activity of trophoblasts were analyzed. The expression of antioxidant enzymes was assessed by reverse-transcription polymerase chain reaction. In addition, the effects of selenium treatment on mitochondrial activity were evaluated in terms of adenosine triphosphate production, mitochondrial membrane potential, and reactive oxygen species levels. Results: Selenium showed positive effects on the viability and migration activity of trophoblast cells when exposed to hypoxia. Interestingly, the increased heme oxygenase 1 expression under hypoxic conditions was decreased by selenium treatment, whereas superoxide dismutase expression was increased in trophoblast cells by selenium treatment for 72 hours, regardless of hypoxia. Selenium-treated trophoblast cells showed increased mitochondrial membrane potential and decreased reactive oxygen species levels under hypoxic conditions for 72 hours. Conclusion: These results will be used as basic data for understanding the mechanism of how trophoblast cells respond to oxidative stress and how selenium promotes the upregulation of related genes and improves the survival rate and invasive ability of trophoblasts through regulating mitochondrial activity. These results suggest that selenium may be used in reproductive medicine for purposes including infertility treatment.

Trophoblast Cell Subtypes and Dysfunction in the Placenta of Individuals with Preeclampsia Revealed by Single-Cell RNA Sequencing

  • Zhou, Wenbo;Wang, Huiyan;Yang, Yuqi;Guo, Fang;Yu, Bin;Su, Zhaoliang
    • Molecules and Cells
    • /
    • v.45 no.5
    • /
    • pp.317-328
    • /
    • 2022
  • Trophoblasts, important functional cells in the placenta, play a critical role in maintaining placental function. The heterogeneity of trophoblasts has been reported, but little is known about the trophoblast subtypes and distinctive functions during preeclampsia (PE). In this study, we aimed to gain insight into the cell type-specific transcriptomic changes by performing unbiased single-cell RNA sequencing (scRNA-seq) of placental tissue samples, including those of patients diagnosed with PE and matched healthy controls. A total of 29,006 cells were identified in 11 cell types, including trophoblasts and immune cells, and the functions of the trophoblast subtypes in the PE group and the control group were also analyzed. As an important trophoblast subtype, extravillous trophoblasts (EVTs) were further divided into 4 subgroups, and their functions were preliminarily analyzed. We found that some biological processes related to pregnancy, hormone secretion and immunity changed in the PE group. We also identified and analyzed the regulatory network of transcription factors (TFs) identified in the EVTs, among which 3 modules were decreased in the PE group. Then, through in vitro cell experiments, we found that in one of the modules, CEBPB and GTF2B may be involved in EVT dysfunction in PE. In conclusion, our study showed the different transcriptional profiles and regulatory modules in trophoblasts between placentas in the control and PE groups at the single-cell level; these changes may be involved in the pathological process of PE, providing a new molecular theoretical basis for preeclamptic trophoblast dysfunction.

Effect of Hypoxia-induced XIAP Expression on Apoptosis of Trophoblast Cells in Placenta (Hypoxia에 의한 X-linked Inhibitor of Apoptosis 발현이 태반 내 영양막세포의 세포자멸사에 미치는 영향)

  • Lee, Jong-Sung;Jeon, Su-Yeon;Choi, Jong-Ho;Lee, Yoo-Jin;Cha, Dong-Hyun;Kim, Gi-Jin
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.37 no.3
    • /
    • pp.217-229
    • /
    • 2010
  • Objective: Apoptosis plays an important role for the maintenance of the normal pregnancy. Expression of X-linked inhibitor of apoptosis (XIAP) is able to effectively prevent apoptosis and controls trophoblast cells death throughout placental development, but it is still unknown in the function of XIAP in trophoblast cells exposed to hypoxic condition, which is one of the factors causing preeclampsia. Therefore, we conducted to compare XIAP expression in normal and pre-eclamptic placenta tissues and analyzed the function of XIAP in HTR-8/SVneo trophoblast cell line exposed to hypoxic condition. Methods: The expression of XIAP was analyzed in placental tissues from the following groups of patients (none underwent labor): 1) term normal placenta (n=15); 2) term with pre-eclamptic placeneta (n=15); and 3) pre-term with pre-eclamptic placenta (n=11) using semi-quantitative RT-PCR, immunohistochemistry, and Western blot. In order to evaluate the function of XIAP in HTR-8/SVneo trophoblast cells under hypoxic condition, HIF-$1{\alpha}$ plasmids, and hypoxic condtion were transfected and treated into HTR-8/SVneo trophoblast cells for 24 hours, respectively. Results: We observed that XIAP are expressed in the syncytiotrophoblasts and syncytial knot of placental villi. The expression of XIAP was significantly decreased in preeclamptic placenta tissues than in normal placenta tissues without labor (p<0.05). Furthermore, we confirmed the XIAP expression in HTR-8/SVneo trophbolast cells exposed to hypoxia was translocated from cytoplasm into nucleus and decreased XIAP by hypoxic condition induced apoptosis in HTR-8/SVneo trophoblast cells through up-regulation of pro-apoptotic proteins. Conclusion: These results suggest that the expression of XIAP is involved in placental development as well as decreased expression of XIAP by hypoxia is associated with pre-eclampsia through inducing trophoblast cells apoptosis.

Expression of Immortalization-upregulated Proteins-2 (IMUP-2) in Placenta (태반 내 Immortalization-upregulated Proteins-2 (IMUP-2) 발현)

  • Jeon, Su-Yeon;Lee, Hyun-Jung;Jung, Hyun-Min;Kim, Jin-Kyeoung;Kim, Gi-Jin
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.36 no.3
    • /
    • pp.163-174
    • /
    • 2009
  • Objectives: Members of the immortalization-upregulated protein (IMUP) family are nuclear proteins implicated in SV40-mediated immortalization and cellular proliferation, but the mechanisms by which their expression is regulated are still unknown in placenta. To investigate to expression and functions of IMUPs in placenta, we conducted to compare IMUPs expression in normal and preeclamptic placenta tissues and analyzed the function of IMUP-2 in HTR-8/SVneo trophoblast cells after IMUP-2 gene transfection. Methods: The expression of IMUPs was analyzed in placental tissues from the following groups of patients (none underwent labor): 1) term normal placenta (n=15); 2) term with preeclamptic placeneta (n=15); and 3) pre-term with preeclamptic placenta (n=11) using semi-quantitative RT-PCR, RNA in situ hybiridization, immunohistochemistry, and Western blot. In order to evaluate the function of IMUP-2 in HTR-8/SVneo trophoblast cells, IMUP-2 plasmids were transfected into HTR-8/SVneo trophoblast cells for 24 hours. Results: We observed that IMUPs are mainly expressed in the syncytiotrophoblasts and syncytial knot of placental villi. The expression of IMUP-1 was not differences between normal and preeclamptic placenta tissues. However, IMUP-2 expression was significantly higher in preterm preeclamptic placenta tissues than in normal placenta tissues without labor (p<0.001). Furthermore, we confirmed overexpression of IMUP-2 induced apoptosis in HTR-8/SVneo trophoblast cells through up-regulation of pro-apoptotic proteins. Conclusions: These results suggest that the expression of IMUP-2 is involved in placental development as well as increased IMUP-2 expression is associated with preeclampsia through the inducing of trophoblast apoptosis.

Expressions of MicroRNA-150 and MicroRNA-424 Targeted to C-reactive Protein in Trophoblast Cell Line (영양막세포에서의 C-reactive protein 조절 microRNA-150과 microRNA-424 발현 분석)

  • Kim, Hee Sung
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.11
    • /
    • pp.375-382
    • /
    • 2019
  • Abnormalities of trophoblast due to early inflammation in pregnancy increase the expression of CRP and affect maternal-fetal interactions, leading to preterm birth and preeclampsia. However, biomarkers related to the regulation of CRP expression have not been found. In this study, miRNA associated with increased expression of CRP was identified and their expression was analyzed to reveal biomarkers involved in the regulation mechanism of trophoblast inflammation through miRNAs. miRNAs that were predicted to regulate CRP gene expression in miRNA databases (mirna, TargetScan, MicroCosm) were screened and HTR-8/SVneo cell lines were treated with LPS (20 ng/mL) to induce inflammatory responses in vitro, with selected miR-7, miR-150, miR-186 and miR-424. The expression was analyzed by qRT-PCR. As a result, expression of CRP was significantly increased in LPS-treated trophoblast (p<0.001) and miR-150 and miR-424 expression were significantly decreased (p<0.001). Thus, miR-150 and miR-424 are involved in the regulation of CRP expression in inflammatory-induced trophoblast and may be useful for the prenatal diagnosis of inflammatory obstetric diseases.

When Dose Losses of Maternal Lymphocytes Response to Trophoblast Antigen or Alloantigen Occur in Women with a History of Recurrent Spontaneous Abortion? (반복유산을 경험한 환자에서 임신중 태반항원과 동종항원에 노출된 모체 림프구면역반응은 언제부터 소실되나?)

  • Choi, Bum-Chae;Hill, Joseph A.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.25 no.2
    • /
    • pp.115-122
    • /
    • 1998
  • The maintenance of a viable pregnancy has long been viewed as an immunological paradox. The deveolping embryo and trophoblast are immunologically foreign to the maternal immune system due to their maternally inherited genes products and tissue-specific differentiation antigens (Hill & Anderson, 1988). Therefore, speculation has arisen that spontaneous abortion may be caused by impaired maternal immune tolerance to the semiallogenic conceptus (Hill, 1990). Loss of recall antigen has been reported in immunosuppressed transplant recipients and is associated with graft survival (Muluk et al., 1991; Schulik et al., 1994). Progesterone $(10^{-5}M)$ has immunosuppressive capabilities (Szekeres-Bartho et al., 1985). Previous study showed that fertile women, but not women with unexplained recurrent abortion (URA), lose their immune response to recall antigens when pregnant (Bermas & Hill, 1997). Therefore, we hypothesized that immunosuppressive doses of progesterone may affect proliferative response of lymphocytes to trophoblast antigen and alloantigen. Proliferative responses using $^3H$-thymidine ($^3H$-TdR) incorporation of peripheral blood mononuclear cells (PBMCs) to the irradiated allogeneic periperal blood mononuclear cells as alloantigen, trophoblast extract and Flu as recall antigen, and PHA as mitogen were serially checked in 9 women who had experienced unexplained recurrent miscarriage. Progesterone vaginal suppositories (100mg b.i.d; Utrogestan, Organon) beginning 3 days after ovulation were given to 9 women with unexplained RSA who had prior evidence of Th1 immunity to trophoblast. We checked proliferation responses to conception cycle before and after progesterone supplementation once a week through the first 7 weeks of pregnancy. All patients of alloantigen and PHA had a positive proliferation response that occmed in the baseline phase. But 4 out of 9 patients (44.4%) of trophoblast antigen and Flu antigen had a positive proliferative response. The suppression of proliferation response to each antigen were started after proliferative phase and during pregnancy cycles. Our data demonstrated that since in vivo progesterone treated PBMCs suppressed more T-lymphocyte activation and $^3H$-TdR incorporation compare to PBMCs, which are not influenced by progesterone. This data suggested that it might be influenced by immunosuppressive effect of progesterone. In conclusion, progesterone may play an important immunological role in regulating local immune response in the fetal-placental unit. Furthermore, in the 9 women given progesterone during a conception cycle, Only two (22%) repeat pregnancy losses occured in these 9 women despite loss of antigen responsiveness (one chemical pregnancy loss and one loss at 8 weeks of growth which was karyotyped as a Trisomy 4). These finding suggested that pregnancy loss due to fetal aneuploidy is not associated with immunological phenomena.

  • PDF

Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Activates Pro-Survival Signaling Pathways, Nuclear Factor-${\kappa}B$ and Extracellular Signal-Regulated Kinase 1/2 in Trophoblast Cell Line, JEG-3

  • Ka Hakhyun
    • Reproductive and Developmental Biology
    • /
    • v.29 no.2
    • /
    • pp.101-108
    • /
    • 2005
  • Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) is a well-known inducer of apoptotic cell death in many tumor cells. 1RAIL is expressed in human placenta, and cytotrophoblast cells express 1RAIL receptors. However, the role of TRAIL in human placentas and cytotrophoblast cells is not. well understood. In this study a trophoblast cell line, JEG-3, was used as a model system to examine the effect of TRAIL. on key intracellular signaling pathways involved in the control of trophoblastic cell apoptosis and survival JEG-3 cells expressed receptors for 1RAIL, death receptor (DR) 4, DR5, decoy receptor (OcR) 1 and DeR2. Recombinant human TRAIL (rhTRAIL) did not have a cytotoxic effect determined by MIT assay and did not induce apoptotic cell death determined by poly-(ADP-ribose) polymerase cleavage assay. rhTRAIL induced a rapid and transient nuclear translocation of nuclear $factor-{\kappa}B(NF-{\kappa}B)$ determined by immunoblotting using nuclear protein extracts. rhTRAIL rapidly activated extracellular signal-regulated protein kinase (ERK) 1/2 as determined by immnoblotting for phospho-ERK1/2. However, c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38MAPK) and Akt (protein kinase B) were not activated by rhTRAIL. The ability of 1RAIL to induce $NF-{\kappa}B$ and ERK1/2 suggests that interaction between TRAIL and its receptors may play an important role in trophoblast cell function during pregnancy.

Expression of Progranulin in Early and Late Gestation Human Placentas

  • Ka Hak-Hyun
    • Reproductive and Developmental Biology
    • /
    • v.30 no.2
    • /
    • pp.107-113
    • /
    • 2006
  • Development of placenta is a complex process that is critical for the pregnancy and controlled by many factors including cytokines, hormones, growth factors and apoptotic molecules. Recently, it has been shown that progranulin (PGRN) functions in growth of embryo and trophectoderm as well as cell migration. To initiate understanding the role of PGRN in human placental development, we investigated the expression of PGRN mRNA and protein in early and late gestation human placentas, term cytotrophoblast cells and two choriocarcinoma cell lines, JEG-3 and Jar. Reverse transcriptase polymerase chain reaction identified mRNAs derived from the PGRN gene in all samples. Immunoblot analysis showed that PGRN proteins are present in early and late gestation human placentas with decreasing levels over gestation and that PGRN proteins are present in normal and transformed trophoblast cells. Immunohistochemical analysis using paraformaldehyde-fixed tissue sections taken from early and late stages of pregnancy showed that PGRN proteins are present in cytotrophoblast cells, syncytiotrophoblast and extravillous cytotrophoblast cells and that expression pattern of PGRN differed according to the stage of cell differentiation. The results of this study are consistent with the hypothesis that PGRN proteins have critical roles in placental development and suggest that PGRN may function in trophoblast cell growth and differentiation.

The role of autophagy in the placenta as a regulator of cell death

  • Gong, Jin-Sung;Kim, Gi Jin
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.41 no.3
    • /
    • pp.97-107
    • /
    • 2014
  • The placenta is a temporary fetomaternal organ capable of supporting fetal growth and development during pregnancy. In particular, abnormal development and dysfunction of the placenta due to cha nges in the proliferation, differentiation, cell death, and invasion of trophoblasts induce several gynecological diseases as well as abnormal fetal development. Autophagy is a catalytic process that maintains cellular structures by recycling building blocks derived from damaged microorganelles or proteins resulting from digestion in lysosomes. Additionally, autophagy is necessary to maintain homeostasis during cellular growth, development, and differentiation, and to protect cells from nutritional deficiencies or factors related to metabolism inhibition. Induced autophagy by various environmental factors has a dual role: it facilitates cellular survival in normal conditions, but the cascade of cellular death is accelerated by over-activated autophagy. Therefore, cellular death by autophagy has been known as programmed cell death type II. Autophagy causes or inhibits cellular death via the other mechanism, apoptosis, which is programmed cell death type I. Recently, it has been reported that autophagy increases in placenta-related obstetrical diseases such as preeclampsia and intrauterine growth retardation, although the mechanisms are still unclear. In particular, abnormal autophagic mechanisms prevent trophoblast invasion and inhibit trophoblast functions. Therefore, the objectives of this review are to examine the characteristics and functions of autophagy and to investigate the role of autophagy in the placenta and the trophoblast as a regulator of cell death.