• Title/Summary/Keyword: trolley

Search Result 195, Processing Time 0.04 seconds

Development of Digital Surface Model and Feature Extraction by Integrating Laser Scanner and CCD sensor

  • Nagai, Masahiko;Shibasaki, Ryosuke;Zhao, Huijing;Manandhar, Dinesh
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.859-861
    • /
    • 2003
  • In order to present a space in details, it is indispensable to acquire 3D shape and texture simultaneously from the same platform. 3D shape is acquired by Laser Scanner as point cloud data, and texture is acquired by CCD sensor. Positioning data is acquired by IMU (Inertial Measurement Unit). All the sensors and equipments are assembled on a hand-trolley. In this research, a method of integrating the 3D shape and texture for automated construction of Digital Surface Model is developed. This Digital Surface Model is applied for efficient feature extraction. More detailed extraction is possible , because 3D Digital Surface Model has both 3D shape and texture information.

  • PDF

Payload-Swing Suppression of a Container Crane: Comparison Between Command Shaping Control and Optimal Control

  • Do, Huh-Chang;Shik, Hong-Keum
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.54.2-54
    • /
    • 2001
  • In this paper two control strategies, command shaping control and optimal control, which aim to the reduction of the residual vibrations of the payload in a container crane system are investigated. Both control methods are open loop control. Due to unmodeled dynamics of the plant and disturbances like initial sway and wind, some residual sway always exists at the end of trolley movement. Command inputs are designed to achieve the control objectives including minimal residual vibration and robustness in the presence of unmodeled dynamics. Simulation results of various command inputs are compared in terms of arrival time, residual sway angle, robustness, and maximum sway distance during the traveling. Command shaping method provides a more competent tool than optimal control.

  • PDF

EMI Measurement of EMU(Electric Multiple Unit) Train System (분산형 전철 시스템의 EMI 측정 연구)

  • Gimm, Yoon-Myoung;Ju, Young-Jun
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.241-245
    • /
    • 2009
  • High speed train system generates much EMI (electromagnetic interference) by arc between the pantograph and the trolley line during the running time. EMI from the tilted EMU train system which is similar to HEMU-400X system for 400 km/h speed and with the distributed engines was measured following EN50121-2, 'Railway applications. - Electromagnetic compatibility (Emission of the whole railway system to the outside world)'. Measured EMI values exceed the limiting values of EN50121-2 in high frequency band ($30\;MHz{\sim}1,000\;MHz$), but exceeding frequencies were identified that they are used for mobile communications. Measured EMI values did not exceed the limiting values in other low frequency band between 9 kHz and 30 MHz.

  • PDF

Comparison of Track Recording with Surveying in Track irregularity Measurement (궤도틀림의 검측값과 측량결과 비교)

  • Lee, Jee-Ha;Choi, Ii-Yoon;Kim, Bak-Jin
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1090-1095
    • /
    • 2008
  • Track geometry changes by traffic loads. The bigger the changes are, the worse the riding comfort and running stability of train. This is so-called track irregularity and is the most important quality parameters of ballasted track. To objectively assess track irregularity, track geometry should be able to be measured. Practically, railway companies use moving chord method, which determine versine values via a chord. The versine is the vertical distance to curve measured in the middle of the chord. This type of method measures only versine of track irregularity curve by transfer function from the characteristics of measuring device. In this report, review the characteristics of two types of measuring tools by comparing the measurements. The one is GRP-1000 system, optical surveying system with Total station and lazar prism trolley. This calculates track geometry by surveying absolute coordinates of two points each on both rail heads. The other is EM-120, measures versine with 10m of symmetrical chord length.

  • PDF

Measurement of EMI by High-Speed Train System (고속전철 시스템의 EMI 측정)

  • Gimm, Yoon-Myoung;Ju, Young-Jun;Yoo, Jea-Seong;Koo, Bon-Chul
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1157-1162
    • /
    • 2008
  • High speed train system consumes much electric power during running, and generate much EMI (electromagnetic interference) by arc between the pantograph and the trolley line. In this paper, EMI was measured following EN50121-2, 'Railway applications. - Electromagnetic compatibility. (Emission of the whole railway system to the outside world)', from the running high-speed railway (KTX) at 300 km/h speed. Measured results exceed the limit values of EN50121-2 in low frequency band ($9\;kHz{\sim}150\;kHz$), but they did not exceed the limit values in other higher frequency band ($150\;kHz{\sim}1\;GHz$).

  • PDF

Development an Structure and Control Algorithm of Propulsion Control for Driving Railway Vehicle in Both AC and DC Power Supply Section (AC 및 DC 전력공급구간 운전을 위한 도시철도용 추진제어시스템의 구조 및 제어 알고리즘 개발)

  • Lee, Chang-Hee;Lee, Ju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.2
    • /
    • pp.84-91
    • /
    • 2019
  • This study proposes a AC/DC railway vehicle control algorithm that enables simultaneous driving of AC and DC power supply sections. In the Seoul metropolitan region, trolley voltage for railway vehicle is divided into AC and DC power supplies. Therefore, AC/DC railway vehicle algorithm is essential for driving on the outskirts of the region. This study analyzes resonance and beat phenomena for simultaneously running in AC and DC power supply sections, and proposes a control algorithm for railway vehicles with the application of damping and beatless controls based on this analysis. The performance of the proposed algorithm is verified by simulation and analysis of actual driving results.

A Study on Status Investigation and Improvement for Safety Management of Zipline(I) (짚라인의 안전관리 실태와 개선방향에 관한 연구(I))

  • Kim, Eui Soo
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.2
    • /
    • pp.15-21
    • /
    • 2019
  • Recently, the number of facilities and users of zipline which is the most popular among extreme leisure facilities has been increasing year by year. Zipline is a means of transporting durable wire between two timber or stay and moving the trolley connected to the passenger at high speed in the opposite direction. However, due to the nature of the zip line facility, the risk of accidents is always present and safety accidents are frequently occurring. Therefore, this study investigates the current state of safety management and extract the problem in terms of safety management through analyzing the installation state of zipline facilities in the case of accidents and reviewing of similar facility regulations. In order to solve this problem, we will contribute to establishment of comprehensive and systematic countermeasures and establishment of safety improvement system by suggesting measures to improve safety management through analyzing foreign regulations and safety management regulations for zipline and other extreme leisure facilities.

Velocity trajectory planning for the implementation of anti-swing crane (무진동 크레인 구현을 위한 속도경로설계 연구)

  • Yoon, Ji Sup;Park, Byung Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.143-152
    • /
    • 1994
  • The velocity trajectory profile of trolley is designed to minimize both swinging while transportation of load and the stop position error at the final stop position. This profile is designed to be automatically programmed by the digital control algorithm when the length of chain and the desired travel distance are given as a priori. Also, to minimize both swinging and the stop position error the anti-swing controller which improves poor damping characteristics of the crane and the stop position controller are employed. The experimentalresults of sequential adaptation of the velocity trajectory profile and these two controllers show that this control scheme has excellent control performance as compared with that of the uncontrolled crane system.

  • PDF

Numerical analysis of water flow characteristics after inrushing from the tunnel floor in process of karst tunnel excavation

  • Li, S.C.;Wu, J.;Xu, Z.H.;Li, L.P.;Huang, X.;Xue, Y.G.;Wang, Z.C.
    • Geomechanics and Engineering
    • /
    • v.10 no.4
    • /
    • pp.471-526
    • /
    • 2016
  • In order to investigate water flow characteristics after inrushing in process of karst tunnel excavation, numerical simulations for five case studies of water inrush from the tunnel floor are carried out by using the FLUENT software on the background of Qiyueshan high risk karst tunnel. Firstly, the velocity-distance curves and pressure-distance curves are drawn by selecting a series of probing lines in a plane. Then, the variation characteristics of velocity and pressure are analyzed and the respective optimized escape routes are made. Finally, water flow characteristics after inrushing from the tunnel floor are discussed and summarized by comparing case studies under the conditions of different water-inrush positions and excavation situations. The results show that: (1) Tunnel constructors should first move to the tunnel side wall and then escape quickly when water inrush happens. (2) Tunnel constructors must not stay at the intersection area of the cross passage and tunnels when escaping. (3) When water inrush from floor happens in the left tunnel, if tunnel constructors meet the cross passage during escaping, they should pass through it rapidly, turn to the right tunnel and run to the entrance. (4) When water inrush from floor happens in the left tunnel, if there is not enough time to escape, tunnel constructors can run to the trolley and other equipment in the vicinity of the right tunnel working face. In addition, some rescuing equipment can be set up at the high location of the cross passage. (5) When water inrush from floor happens in the cross passage, tunnel constructors should move to the tunnel side wall quickly, turn to the tunnel without water inrush and run to the entrance. (6) When water inrush from floor happens in the cross passage, if there is not enough time to escape, tunnel constructors can run to the trolley and other equipment near by the left or the right tunnel working face. The results are of important practical significance and engineering value to ensure the safety of tunnel construction.

Comparing Cycle Times of Advanced Quay Cranes in Container Terminals

  • Phan-Thi, Mai-Ha;Ryu, Kwangyeol;Kim, Kap Hwan
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.4
    • /
    • pp.359-367
    • /
    • 2013
  • The amount of international trade is rapidly increasing as a result of globalization. It is well known that as the size of a vessel becomes larger, the transportation cost per container decreases. That is, the economy-of-scale holds even in maritime container transportation. As a result, the sizes of containerships have been steadily increased for reducing transportation costs. In addition, various handling technologies and handling equipment have been introduced to increase the throughput capacities of container terminals. Quay crane (QC) that carries out load/unload operations plays the most important role among various handling equipment in terminals. Two typical examples of advanced QC concepts proposed so far are double trolley QC and supertainer QC. This paper suggests a method of estimating the expected value and the standard deviation of the container handling cycle time of the advanced QCs that involve several handling components which move at the same time. Numerical results obtained by the proposed estimation procedure are compared with those obtained by simulation studies. In order to demonstrate the advantage of advanced QCs, we compared their expected cycle times with those of a conventional QC.