• Title/Summary/Keyword: tritium

Search Result 276, Processing Time 0.025 seconds

Prediction of Tritium Release from Wolsong Unit during the WTRF Operation (월성원전 TRF 가동에 따른 삼중수소 방출량 예측)

  • 송규민;이성진;이숙경;손순환;엄희문
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.484-490
    • /
    • 2003
  • The amount of the tritium released from Wolsong units during the WTRF operation is predicted. The profiles of tritium concentration in moderators and PHTs as variation of WTRF service allotment for each Wolsong unit are calculated, and the tritium releases are obtained from these tritium concentration profiles. The tritium concentration in moderator will be decreased down under 10 Ci/kg in 2013 and the yearly tritium release will be reduced below 25% of WTRF start year.

  • PDF

Tritium Distribution in Leachates from Domestic Solid Waste Landfills (생활폐기물 매립장 침출수의 삼중수소 분포)

  • Park, Soon Dal;Kim, Jung Suk;Joe, Kih Soo;Kim, Jong Gu;Kim, Won Ho
    • Analytical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.251-262
    • /
    • 2004
  • It is for the purpose of investigating the tritium distribution in the leachates, the raw and treated leachates and the condensates of the methane gas, which have occurred from domestic solid waste landfills. Also it aims to measure the tritium distribution level on the colloid size of the leachates, the raw and treated leachates. It was found that the major inorganic contaminants of the leachates were Na, K, Ca, Mg, $NH{_4}^+$-N and $Cl^-$. The mean tritium level of the raw leachates of the investigated 13 landfill sites for 6 months was 17 ~ 1196 TU. It corresponded to a several scores or hundreds of magnitude higher value than that of the normal environmental sample level except for two landfill sites. Also such a high concentration of the tritium was found in the treated leachates and methane gas condensates as well. Nevertheless it is important to emphasize that the tritium level which was found in this research is about 100 times lower than the tritium limit for the drinking water quality. And most of the tritium existed in the dissolved colloid of the leachate of which the colloid size is below $0.45{\mu}m$. Also, according to the tritium analysis results of the leachates after filtration with $0.45{\mu}m$ membrane filter for some landfills, it is likely that some tritium of the leachate would be distributed in a colloid size over $0.45{\mu}m$. In general the relationship between the tritium and other contaminants in the raw leachate was low, but it was relatively high between the tritium and TOC. However, the tritium content in the leachate had no meaningful relationship with the scale, hydrological characteristics and age of the landfill.

Tissue distribution, excretion and effects on genotoxicity of tritium following oral administration to rats

  • Lee, Jei Ha;Kim, Cha Soon;Choi, Soo Im;Kim, Rae-Kwon;Kim, Ji Young;Nam, Seon Young;Jin, Young Woo;Kim, In Gyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.303-309
    • /
    • 2019
  • Tritium is an important nuclide that must be monitored for radiation safety management. In this study, HTO was orally administered to rats at the level of 37 kBq ($1{\mu}Ci$) or 370 kBq ($10{\mu}Ci$) to examine tissue distribution and excretion levels. After sacrifice, wet and dry tissue samples were weighed and analyzed for tissue free-water tritium (TFWT) and organically bound tritium (OBT). The mean tissue concentrations of TFWT (OBT) were 30.9 (17.8) and 4.4 (8.1) Bq/g on days 7 and 13 at the 37 kBq level and 30.8 (64.6) Bq/g on day 17 at the 370 kBq level. To assess the cytogenetic damage due to tritium exposure, a cytokinesis-blocked micronucleus (MN) assay was performed in blood samples from rats exposed to HTO for 14 and 21 days after oral administration. There was no significant difference in the MN frequencies between the control and exposed rats.

Design of Tritium Handling System(II): Injection System, Regeneration System (삼중수소취급계통의 설계(II): 주입계통, 재생계통)

  • 김광신;김경숙;정은수;손순환;김위수
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.117-123
    • /
    • 2003
  • In succession to the previous paper, the tritium injection system and the regeneration system of the tritium handling system are presented. Both systems should be placed inside glove boxes since there can be potential leakage of tritium from these systems. The tritium injection system should be capable of measuring the exact amount of the injected tritium to keep track of the tritium inventory. The tritium injection system is designed to recover the remaining tritium from the system after injection for the minimization of tritum release to the environment as well as for the recovery of precious resource. TRS equipment such as MS, Ni catalyst bed, and metal getter are regenerated with a standalone regeneration system. Unlike other equipments which can be regenerated by heating and purging with appropriate gas, regeneration of the metal getter used to recover tritium is somewhat complicated.

  • PDF

Tritium Concentrations in Surface Seawater around Korean Peninsula (한국 주변 해역 표층해수중 삼중수소 농도)

  • Kim, Chang-Kyu;Cho, Yong-Woo;Kim, Kye-Hun
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.2
    • /
    • pp.107-115
    • /
    • 1996
  • An electrolytic enrichment technique was used to measure low levels of tritium in seawater around the Korean peninsula. Tritium concentrations were determined for surface seawater samples collected from the East Sea, the South Sea, and the Yellow Sea. The tritium concentrations in surface seawater samples from the study area ranged from $0.12 BqL^{-1}\;to\;1.50BqL^{-1}$ with a mean value of $0.60{\pm}0.35 BqL^{-1}$. The means of the tritium concentration were $0.54{\pm}0.30 BqL^{-1}$ for the East Sea, $0.48{\pm}0.35 BqL^{-1}$ for the South Sea, and $0.77{\pm}0.32 BqL^{-1}$ for the Yellow Sea. The tritium concentrations in the sea areas did not show much difference no matter where the samples were taken. Due to the limited number and distribution of sampling points, no systematic change in tritium levels with latitude was observed. Measured tritium levels were similar to those observed in other data collected near Japan, but higher than mid-Pacific Ocean measurements.

  • PDF

Li4SiO4 slurry conditions and sintering temperature for fabricating Li4SiO4 pebbles as tritium breeders for nuclear-fusion reactors

  • Young Ah Park;Ji Won Yoo;Yi-Hyun Park;Young Soo Yoon
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2966-2976
    • /
    • 2023
  • A tritium breeder is a lithium-based material capable of producing tritium. Many researchers designing nuclear-fusion energy are studying tritium production using pebbles, which are solid-type breeders. The sphericity and size of the pebbles are critical in obtaining pebbles with good tritium-breeding efficiency. Furthermore, tritium-release efficiency can be increased by using pebbles with appropriate porosities. Promising raw materials for tritium-breeding materials include Li4SiO4 and Li2TiO3. Li4SiO4 has a higher lithium density than Li2TiO3 and exhibits excellent tritium-breeding efficiency. However, it has the disadvantage of being easily decomposed during the Li4SiO4-green-pebble sintering process because of its low structural stability at high temperatures and high lithium density. In this study, we attempted to determine the optimal conditions for manufacturing Li4SiO4 pebbles using the droplet-freeze-drying method. The optimal Li4SiO4 slurry conditions and sintering temperatures were determined. The optimal Li4SiO4 slurry-fabrication conditions were 3 wt% polyvinyl alcohol and 75 wt% Li4SiO4 based on the deionized-water weight content. The sintering temperature at which Li4SiO4 did not decompose and exhibited the optimum porosity of 10.8% was 900 ℃.

A Study and Analysis on Tritium Radioactivity and Environmental Behavior in Domestic NPPs (국내 원전 삼중수소 방사능 배출 및 환경 거동에 대한 분석 및 고찰)

  • Han, Sang Jun;Lee, Kyeong Jin;Yeom, Jeong Min;Shin, Dae Tewn
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.4
    • /
    • pp.267-276
    • /
    • 2015
  • Several analyses on tritium that is the largest release of gas or liquid radioactive waste from domestic PWR and PHWR NPPs were carried out, such as release comparison, directional frequency of wind and tritium behavior changes in environmental samples. First of all, analysis result showed that tritium released from PHWR was more than ten times as gas and double to three times as liquid in comparison to PWR in 2013. Independent release management in NPP units is needed to precisely control and analyze tritium, since there were 2 units of some NPPs having the same amount of release during analysis. In analysis on frequency of wind direction, average range showed 1.7 to 11.5% by 16-point compass. In case of analysis on sampling points by wind direction, Result showed most of the sampling points are right in places. However, There are some areas needed to examine. In analysis on tritium concentration changes in environmental samples, tritium concentration near NPPs was higher than one far away from NPPs. In case of environmental samples far from PWR, a trace of tritium occur. While, tritium concentration near NPPs was more than or equal to one further from PHWR. In conclusion, tritium occurs considerably in PHWR and is lower than standard in samples. but, it is still detected. Therefore, it is needed to strengthen control in system in NPPs and to consistently monitor tritium in environment.

Optimum Design of the Wolsong Tritium Removal Facility

  • Ahn, Do-Hee;Lee, Han-Soo;Chung, Hong-Suk;Song, Myung-Jae;Son, Soon-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.415-422
    • /
    • 1996
  • Tritium removal from tritiated heavy water in a PHWR is the most effective way in reducing workers' internal dose and radioactivity emissions from Wolsong NPP. The optimum design of the Wolsong TRF (Tritium Removal Facility) was carried out using an approximate short-cut method with an assumption that the TRF, designed to extract 8 MCi per year of elemental tritium from a heavy oater feedstream, uses Liquid Phase Catalytic Exchange (LPCE) front-end process and Cryogenic Distillation (CD) process.

  • PDF

Fundamental Study of Unit Proton Exchange Membrane Electrolysis for Realtime Detection of Tritium (실시간 삼중수소 검출을 위한 단위 양성자 교환 막 전기분해 기초연구)

  • CHAE, JONGMIN;YU, SANGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.2
    • /
    • pp.226-234
    • /
    • 2018
  • Even though the nuclear power plants has many advantages, safety issues of nuclear power plants are crucial factors of reliable operation. A tritium detector is a useful sensor to analyze amount of exposed radiation from the nuclear power plants. Currently, concentration of underwater tritium is measured precisely but it takes very long time. Since electrolysis is extracted hydrogen from the coolant of nuclear power plant, it can motivate to develop new type of real-time sensor. In this study, Proton Exchange Membrane (PEM) electrolyzer is studied for candidate as preprocessor of real-time tritium detector. Characteristics of the unit PEM electrolyzer were experimentally investigated. A simulation model is developed to understand physical behavior of unit PEM electrolyzer under dynamic operation.

Safety Analysis on the Tritium Release Accidents

  • Yang, Hee joong
    • Journal of Korean Society for Quality Management
    • /
    • v.19 no.2
    • /
    • pp.96-107
    • /
    • 1991
  • At the design stage of a plant, the plausible causes and pathways of release of hazardous materials are not clearly known. Thus there exist large amount of uncertainties on the consequences resulting from the operation of a fusion plant. In order to better handle such uncertain circumstances, we utilize the Probabilistic Risk Assessment(PRA) for the safety analyses on fusion power plant. In this paper, we concentrate on the tritium release accident. We develop a simple model that describes the process and flow of tritium, by which we figure out the locations of tritium inventory and their vulnerability. We construct event tree models that lead to various levels of tritium release from abnormal initiating events. Branch parameters on the event tree are assessed from the fault tree analysis. Based on the event tree models we construct influence diagram models which are more useful for the parameter updating and analysis. We briefly discuss the parameter updating scheme, and finally develop the methodology to obtain the predictive distribution of consequences resulting from the operating a fusion power plant. We also discuss the way to utilize the results of testing on sub-systems to reduce the uncertain ties on over all system.

  • PDF