• Title/Summary/Keyword: tritiated water vapor (HTO)

Search Result 3, Processing Time 0.015 seconds

Tritium Concentrations of Tritiated Water Vapor and Tritiated Hydrogen in the Atmosphere in Taejon (대전지역 대기중 수증기상태 (HTO) 및 가스상태 (HT) 삼중수소의 농도)

  • Kim, C.K.;Han, M.J.;Kim, K.H.
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.2
    • /
    • pp.97-101
    • /
    • 1997
  • During the period of March 1995 to December 1995, tritium concentrations of tritiated water vapor (HTO) and tritiated hydrogen (HT) in the atmosphere in Taejon were measured to evaluate present background levels of tritium in the atmosphere. Air samples were collected continuously for three weeks with a sampling system for tritium in the atmosphere and were analyzed by a liquid scintillation counting system. The range of the atmospheric HTO concentrations was 3.2-36 mBq $m^{-3}$ with a mean value of 16.2 mBq $m^{-3}$. The atmospheric HTO concentrations were the highest in summer and the lowest in winter. This trend was similar to the variation of atmospheric absolute humidity. The specific activities of tritium in atmospheric water vapor in Taejon ranged from 0.62 Bq $L^{-1}$ to 3.82 Bq $L^{-1}$ with a mean value of 2.04 Bq $L^{-1}$. The atmospheric HT concentrations were in the range of 35.7 mBq $m^{-3}$ to 48.9 mBq $m^{-3}$ with a mean value of 41.1 mBq $m^{-3}$.

  • PDF

Verification of a Dynamic Compartment Model for the Tritium Behavior in the Plants After Short HTO Release Using a BIOMOVS II Scenario

  • Park, Heui-Joo;Kang, Hee-Suk;Lee, Hansoo
    • Nuclear Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.171-177
    • /
    • 2003
  • A dynamic compartment model was required for the prediction of radiological consequences of the tritiated vapor released from the nuclear facility after an accident. A computer code, ECOREA-T, was developed by incorporating the unit models for the evaluation of tritium behavior in the environment. Dry deposition of tritiated vapor from the atmosphere to the soil was calculated using a deposition velocity. Transport of tritium from the atmosphere to the plant was calculated using a specific activity model, and the result was compared with the Belot's analytic solution. Root uptake of tritiated water from the soil and formation of OBT from T were considered in the model. The ECOREA-T code was verified by comparing the results from the other computer codes using a scenario developed through BIOMOVS II study. The results showed good agreements.

Analysis of Metabolism and Effective Half-life for Tritium Intake of Radiation Workers at Pressurized Heavy Water Reactor (중수로원전 종사자의 삼중수소 체내섭취에 따른 인체대사모델과 유효반감기 분석)

  • Kim, Hee-Geun;Kong, Tae-Young
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.2
    • /
    • pp.87-94
    • /
    • 2009
  • Tritium is the one of the dominant contributors to the internal radiation exposure of workers at pressurized heavy water reactors (PHWRs). This nuclide is likely to release to work places as tritiated water vapor (HTO) from a nuclear reactor and gets relatively easily into the body of workers by inhalation. Inhaled tritium usually reaches the equilibrium of concentration after approximately 2 hours inside the body and then is excreted from the body with a half-life of 10 days. Because tritium inside the body transports with body fluids, a whole body receives radiation exposure. Internal radiation exposure at PHWRs accounts for approximately 20-40% of total radiation exposure; most internal radiation exposure is attributed to tritium. Thus, tritium is an important nuclide to be necessarily monitored for the radiation management safety. In this paper, metabolism for tritium is established using its excretion rate results in urine samples of workers at PHWRs and an effective half-life, a key parameter to estimate the radiation exposure, was derived from these results. As a result, it was found that the effective half-life for workers at Korean nuclear power plants is shorter than that of International Commission on Radiological Protection guides, a half-life of 10 days.