• Title/Summary/Keyword: tricarboxylic acid cycle enzymes

Search Result 13, Processing Time 0.018 seconds

Development of Cucumber Cotyledon in View of Metabolic Pathways and Organelle (세포내 소기관과 물질대사의 관점에서 오이 떡잎의 발달)

  • Kim, Dae-Jae
    • Journal of Life Science
    • /
    • v.31 no.8
    • /
    • pp.778-785
    • /
    • 2021
  • The germination of cucumber seeds begins with the degradation of reserved oil to fatty acids within the lipid body, which are then further metabolized to acyl-CoA. The acyl-CoA moves from the lipid body to the glyoxysome following β-oxidation for the production of acetyl-CoA. As an initial carbon source supplier, acetyl-CoA is an essential molecule in the glyoxylate cycle within the glyoxysome, which produces the metabolic intermediates of citrate and malate, among others. The glyoxylate cycle is a necessary metabolic pathway for oil seed plant germination because it produces the metabolic intermediates for the tricarboxylic acid (TCA) cycle and for gluconeogenesis, such as the oxaloacetate, which moves to the cytosol for the initiation of gluconeogenesis by phophoenolpyruvate carboxykinase (PEPCK). Following reserved oil mobilization, the production and transport of various metabolic intermediates are involved in the coordinated operation and activation of multiple metabolic pathways to supply directly usable carbohydrate in the form of glucose. Furthermore, corresponding gene expression regulation compatibly transforms the microbody to glyoxysome, which contains the organelle-specific malate synthase (MS) and isocitrate lyase (ICL) enzymes during oil seed germination. Together with glyoxylate cycle, carnitine, which mediates the supplementary route of the acetyl-CoA transport mechanism via the mitochondrial BOU (A BOUT DE SOUFFLE) system, possibly plays a secondary role in lipid metabolism for enhanced plant development.

Effects of Dietary L-carnitine Supplementation on Growth Performance, Organ Weight, Biochemical Parameters and Ascites Susceptibility in Broilers Reared Under Low-temperature Environment

  • Wang, Y.W.;Ning, D.;Peng, Y.Z.;Guo, Y.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.2
    • /
    • pp.233-240
    • /
    • 2013
  • The objective of this study was to investigate the effects of L-carnitine on growth performance, organ weight, biochemical parameters of blood, heart and liver, and ascites susceptibility of broilers at different ages reared under a low-temperature environment. A total of 420 1-d-old male Ross 308 broilers were randomly assigned to two dietary treatments with fifteen replicates of fourteen broilers each. Treatment diets consisted of L-carnitine supplementation at levels of 0 and 100 mg/kg. At 11-d of age, low temperature stress was used to increase ascites susceptibility. Blood, heart and liver samples were collected at different ages for analysis of boichemical parameters. The results showed that, there was no significant difference in growth performance with L-carnitine supplementation, but the mortality due to ascites was significantly decreased. Dietary L-carnitine supplementation significantly reduced heart index (HI) and ascites heart index (AHI) on d 21, lung index (LUI) on d 35 and liver index (LI) on d 42. The broilers fed diets containing L-carnitine had significantly lower red blood cell counts (RBC), hemoglobin (HGB) concentration and hematocrit (HCT) on d 42. Dietary L-carnitine supplementation significantly reduced malondialdehyde (MDA) content of heart tissue on d 21 and 35, and significantly increased total superoxide dismutase (T-SOD) and Glutathione peroxidase (GSH-Px) activity of the heart on d 21 and 42. L-carnitine supplementation significantly reduced serum triglyceride (TG) content on d 28 and 35 and serum glucose (GLU) on d 35 and 42, and significantly increased serum total protein (TP) and globulin (GLO) content on d 42. L-carnitine supplementation significantly enhanced liver succinodehydrogenase (SDH), malic dehydrogenase (MDH) and $Na^+$-$K^+$-ATPase activity on d 28, and tended to reduce the lactic acid (LD) level of liver on d 35 (p = 0.06). L-carnitine supplementation significantly reduced serum uric acid (UA) content on d 28, 35 and 42. Based on the current results, it can be concluded that dietary L-carnitine supplementation reduced organ index, red blood cell counts and hematocrit, enhanced antioxidative capacity of the heart, enhanced liver enzymes activity involved in tricarboxylic acid cycle, and reduced serum glucose and triglyceride. Therefore, it is suggested that L-carnitine can potentially reduce susceptibility and mortality due to ascites.

Function and Molecular Ecology Significance of Two Catechol-Degrading Gene Clusters in Pseudomonas putida ND6

  • Shi, Sanyuan;Yang, Liu;Yang, Chen;Li, Shanshan;Zhao, Hong;Ren, Lu;Wang, Xiaokang;Lu, Fuping;Li, Ying;Zhao, Huabing
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.259-271
    • /
    • 2021
  • Many bacteria metabolize aromatic compounds via catechol as a catabolic intermediate, and possess multiple genes or clusters encoding catechol-cleavage enzymes. The presence of multiple isozyme-encoding genes is a widespread phenomenon that seems to give the carrying strains a selective advantage in the natural environment over those with only a single copy. In the naphthalene-degrading strain Pseudomonas putida ND6, catechol can be converted into intermediates of the tricarboxylic acid cycle via either the ortho- or meta-cleavage pathways. In this study, we demonstrated that the catechol ortho-cleavage pathway genes (catBICIAI and catBIICIIAII) on the chromosome play an important role. The catI and catII operons are co-transcribed, whereas catAI and catAII are under independent transcriptional regulation. We examined the binding of regulatory proteins to promoters. In the presence of cis-cis-muconate, a well-studied inducer of the cat gene cluster, CatRI and CatRII occupy an additional downstream site, designated as the activation binding site. Notably, CatRI binds to both the catI and catII promoters with high affinity, while CatRII binds weakly. This is likely caused by a T to G mutation in the G/T-N11-A motif. Specifically, we found that CatRI and CatRII regulate catBICIAI and catBIICIIAII in a cooperative manner, which provides new insights into naphthalene degradation.