• Title/Summary/Keyword: triazine derivative

Search Result 14, Processing Time 0.017 seconds

Synthesis of New Heterocycles Derived from 3-(3-Methyl-1H-indol-2-yl)-3-oxopropanenitrile as Potent Antifungal Agents

  • Gomha, Sobhi M.;Abdel-Aziz, Hatem A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2985-2990
    • /
    • 2012
  • New thiazoline derivatives 7a-c, and thiophenes 9a-c linked to indole moiety were easily prepared via the reaction of the acrylamide derivative 3 with phenacyl bromides 4a-c, depending on the reaction conditions. In addition, the reaction of compound 3 with hydrazonoyl chlorides 11a-f afforded a series of 1,3,4-thiadiazole derivatives 13a-f. Moreover, coupling of 3-(3-methyl-1H-indol-2-yl)-3-oxopropanenitrile (2) with the diazonium salts of 3-phenyl-5-aminopyrazole 16 or 3-amino-1,2,4-triazole 17 gave the corresponding hydrazones 18 and 19, respectively. Cyclization of the latter hydrazones yielded the corresponding pyrazolo[5,1-c]-1,2,4-triazine and 1,2,4-triazolo[5,1-c]-1,2,4-triazine derivatives 20 and 21, respectively. The structures of the synthesized compounds were assigned on the basis of elemental analysis, IR, $^1H$ NMR and mass spectral data. All the synthesized compounds were tested for in vitro activities against certain strains of fungi such as Aspergillus niger, Aspergillus nodulans, Alternaria alternate. Compounds showed marked inhibition of fungal growth nearly equal to the standards.

Antimicrobial Assessment of Some Heterocyclic Compounds Utilizing Ethyl 1-Aminotetrazole-5-carboxylate (Ethyl 1-Aminotetrazole-5-carboxylate로부터 유도된 헤테로고리 화합물들의 항균 활성 시험)

  • Taha, Mamdouh A. M.;El-Badry, Susan M.
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.4
    • /
    • pp.414-418
    • /
    • 2010
  • Ethyl 1-aminotetrazole-5-carboxylate (1) reacted with hydrazine hydrate to give the corresponding aminohydrazide 2. Cyclization of 2 by carbon disulfide yielded 1,3,4-oxadiazole-5-thiol structure 3. Reaction of 3 with either chloroacetone or ethyl chloroacetate furnished S-acyl 1,3,4-oxadiazole derivatives 4 and 5, respectively. Also compound 3 reacted with hydrazine hydrate afforded 4-amino-1,2,4-triazole-5-thiol derivative 6. 6-Methyl-1,3,4-triazolo[3,4-b]-1,3,4-thiadiazole structure 7 was synthesized by reaction of aminothiol 6 with glacial acetic acid. Diazotization of 1 with sodium nitrite in presence of hydrochloric acid yielding the diazonium salt which on treating with hippuric acid, oxazolone derivative 8 was obtained. Furthermore, tetrazolo[5,1-f]-1,2,4-triazine 9 was constructed via cyclization of aminoester 1 with formamide. Compound 9 reacted with carbon disulfide to furnish 8-thione derivative 10 which reacting with chloroacetone, ethyl chloroacetate, and hydrazine hydrate, the corresponding chemical structures 11, 12, and 13 were synthesized. 1,2,4-Triazolo[4,3-d]tetrazolo[5,1-f]-1,2,4-triazines 14 and 15 were resulted by treating of compound 13 with triethyl orthoformate, and glacial acetic acid, respectively. The structures of the newly synthesized products were elucidated according to elemental analyses and spectroscopic evidences. Some of the representative members of the prepared compounds were screened for antimicrobial activity.

Novel Syntheses of 5-Aminothieno[2,3-c]pyridazine, Pyrimido[4',5':4,5]thieno[2,3-c]pyridazine, Pyridazino[4',3':4,5]thieno-[3,2-d][1,2,3]triazine and Phthalazine Derivatives

  • El Gaby, Mohamed S.A.;Kamal El Dean, Adel M.;Gaber, Abd El Aal M.;Eyada, Hassan A.;Al Kamali, Ahmed S.N.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.8
    • /
    • pp.1181-1187
    • /
    • 2003
  • Condensation of 4-cyano-5,6-dimethyl-3-pyridazinone 1 with aromatic aldehydes gave the novel styryl derivatives 2a-c. Refluxing of compound 2a with phosphorus oxychloride furnished 3-chloropyridazine derivative 3. Compound 3 was reacted with thiourea and produced pyridazine-3(2H)thione 4. Thieno[2,3-c]- pyridazines 5a-e were achieved by cycloalkylation of compound 4 with halocompounds in methanol under reflux and in the presence of sodium methoxide. Also, refluxing of compound 4 with N-substituted chloroacetamide in the presence of potassium carbonate afforded thienopyridazines 6a-e. Cyclization of compound 6 with some electrophilic reagents as carbon disulfide and triethyl orthoformate furnished the novel pyrimido[4',5':4,5]thieno[2,3-c]pyridazines 12 and 13a-c, respectively. Diazotisation of compound 6 with sodium nitrite in acetic acid produced the pyridazino[4',3':4,5]thieno[3,2-d][1,2,3]triazines 14a-c. Ternary condensation of compound 1, aromatic aldehydes and malononitrile in ethanol containing piperidine under reflux afforded the novel phthalazines 16a-c. Compound 3 was subjected to some nucleophilic substitution reactions with amines and sodium azide and formed the aminopyridazines 17a, b and tetrazolo[1,5-b]-pyridazine 19, respectively. The structures of the synthesized compounds were established by elemental and spectral analyses.

Novel artesunate-metformin conjugate inhibits bladder cancer cell growth associated with Clusterin/SREBP1/FASN signaling pathway

  • Peiyu Lin;Xiyue Yang;Linghui Wang;Xin Zou;Lingli Mu;Cangcang Xu;Xiaoping Yang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.3
    • /
    • pp.219-227
    • /
    • 2024
  • Bladder cancer remains the 10th most common cancer worldwide. In recent years, metformin has been found to have potential anti-bladder cancer activity while high concentration of IC50 at millimolar level is needed, which could not be reached by regular oral administration route. Thus, higher efficient agent is urgently demanded for clinically treating bladder cancer. Here, by conjugating artesunate to metformin, a novel artesunate-metformin dimer triazine derivative AM2 was designed and synthesized. The inhibitory effect of AM2 on bladder cancer cell line T24 and the mechanism underlying was determined. Anti-tumor activity of AM2 was assessed by MTT, cloning formation and wound healing assays. Decreasing effect of AM2 on lipogenesis was determined by oil red O staining. The protein expressions of Clusterin, SREBP1 and FASN in T24 cells were evaluated by Western blotting. The results show that AM2 significantly inhibited cell proliferation and migration at micromolar level, much higher than parental metformin. AM2 reduced lipogenesis and down-regulated the expressions of Clusterin, SREBP1 and FASN. These results suggest that AM2 inhibits the growth of bladder cancer cells T24 by inhibiting cellular lipogenesis associated with the Clusterin/SREBP1/FASN signaling pathway.