• Title/Summary/Keyword: triaxial compressive test

Search Result 65, Processing Time 0.026 seconds

Strength Characteristics of Cemented Sand of Nak-dong River (낙동강유역 시멘트혼합토의 강도특성)

  • Kim, Youngsu;Jeong, Wooseob;Seok, Taeryong;Im, Ansik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.4
    • /
    • pp.43-52
    • /
    • 2006
  • There were huge damages of human beings and their properties in many areas of the basin of the Nak-Dong river by the unusual weather and the localized downpour recently. In this research against disasters, we want to know strength of the cemented sand that is mixed with cement and poor-graded sand, to estimate CSG(Cemented Sand and Gravel) method used coffer dam in Japan, which is the materials of riverbed in the basin of the Nak-Dong river for levee's construction. For that, we want to provide the fundamental data which need in the examination of adaptation of levee's material, design and analysis by investigating compressive strength by curing period and cement content, elastic modulus and stress by transformation from compaction test, CBR test, unconfined compression test and triaxial compression test as changing cement content from 2% to 8% at two sites in the basin of the Nak-Dong river.

  • PDF

Strength Characteristics of Cemented Sand and Gravel (Cemented Sand and Gravel 재료의 강도특성)

  • Kim Ki-Young;Park Han-Gyu;Jeon Je-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.10
    • /
    • pp.61-71
    • /
    • 2005
  • Cemented Sand and Gravel (CSG) is a material made by simple mixing of rock-based raw materials such as excavated soil and riverbed gravel together with cement and water. The use of CSG material for cofferdam and large dam is gradually increasing in Japan because a quarry and aggregate plants can be diminished. Also, the CSG method can reduce dam construction cost, construction duration and destruction of environment. In this paper, the basic strength characteristics of CSG, such as compressive strength, modulus of elasticity and stress-strain curve were investigated by unconfined compression test and large triaxial compression test. From the results of the experimental study, the correlation equations between elastic modulus and unit cement, age are proposed.

Evaluation of Undrained Shear Strength for Clayey Silt with Low Plasticity from the West Coast (서해안 저소성 점토질 실트 지반의 비배수 전단강도 평가)

  • Kim, Seok-Jo;Lee, Sang-Duk;Kim, Ju-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.8
    • /
    • pp.15-25
    • /
    • 2016
  • In order to analyze undrained shear strength for clayey silt with low plasticity from Hwaseong site, a series of laboratory and in-situ tests were performed. The Unconfined Compressive (UC) test and Simple Consolidated-Undrained Triaxial (SCU) test were examined in order to assess their applicability to the measurement of the undrained strength of this soil. In the case of clayey silt with low plasticity, although the samples were properly taken by undisturbed sampling method, the residual effective stress and the unconfined compressive strength were reduced considerably. Therefore, an effective confining pressure that corresponds to the typical marine clay should be applied to the soil specimen before shearing in order to compensate for the loss of residual effective stress. By evaluating the shear strengths of clayey silt with low plasticity as 75% of $s_{u(scu)}$, the in-situ shear strength of this kind of soil can be duplicated.

Engineering Characteristics of Non-sintering Binder-stabilized Mixture using Industrial By-Products (산업부산물을 이용한 비소성 고화제 혼합토의 역학적 특성)

  • Yun, Dae-Ho;Mun, Kyoung-Ju;Kim, Yun-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.140-146
    • /
    • 2014
  • This study investigated the engineering characteristics of non-sintering binder-stabilized mixtures consisting of different ratios of a hardening agent(3%, 6%, 9%, 12%) for recycling industrial by-products through several series of laboratory tests. The hardening agents consisted of two kinds of non-sintering binders(NSB-1, NSB-2), which were developed by using inter-chemical reactions among blast furnace slag, phospho-gypsum, and an alkali activator. In addition, ordinary Portland cement(OPC) was used to compare the engineering characteristics of the stabilized mixture. An unconfined compressive test showed that the unconfined compressive strength increased with the curing time and mixing ratio. Experimental test results indicated that the 7-day strength of the NSB-1 mixture was similar to that of the OPC mixture. However, its 28-day strength was higher than that of the OPC mixture. The secant module of elasticity showed a range of $E_{50}=(42-109)q_u$ regardless of the agents. Based on the results of triaxial tests, the cohesion and friction angle increased with the mixing ratio.

Effect of Intermediate Principal Stress on Rock Fractures

  • Chang, Chan-Dong
    • Journal of the Korean earth science society
    • /
    • v.25 no.1
    • /
    • pp.22-31
    • /
    • 2004
  • Laboratory experiments were conducted in order to find effects of the intermediate principal stress of ${\sigma}_{2}$ on rock fractures and faults. Polyaxial tests were carried out under the most generalized compressive stress conditions, in which different magnitudes of the least and intermediate principal stresses ${\sigma}_{3}$ and ${\sigma}_{2}$ were maintained constant, and the maximum stress ${\sigma}_{1}$, was increased to failure. Two crystalline rocks (Westerly granite and KTB amphibolite) exhibited similar mechanical behavior, much of which is neglected in conventional triaxial compression tests in which ${\sigma}_{2}$ = ${\sigma}_{3}$. Compressive rock failure took the form of a main shear fracture, or fault, steeply dipping in ${\sigma}_{3}$ direction with its strike aligned with ${\sigma}_{2}$ direction. Rock strength rose significantly with the magnitude of ${\sigma}_{2}$, suggesting that the commonly used Mohr-type failure criteria, which ignore the ${\sigma}_{2}$ effect, predict only the lower limit of rock strength for a given ${\sigma}_{3}$ level. The true triaxial failure criterion for each of the crystalline rocks can be expressed as the octahedral shear stress at failure as a function of the mean normal stress acting on the fault plane. It is found that the onset of dilatancy increases considerably for higher ${\sigma}_{2}$. Thus, ${\sigma}_{2}$ extends the elastic range for a given ${\sigma}_{3}$ and, hence, retards the onset of the failure process. SEM inspection of the micromechanics leading to specimen failure showed a multitude of stress-induced microcracks localized on both sides of the through-going fault. Microcracks gradually align themselves with the ${\sigma}_{1}$-${\sigma}_{2}$ plane as the magnitude of ${\sigma}_{2}$ is raised.

Anisotropic Behavior of the shale with Confined Pressure (구속압에 따른 셰일의 이방성 거동)

  • Seo, In-Shik;Kim, Dong-Rak
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.2
    • /
    • pp.77-84
    • /
    • 2005
  • Foliated metamorphic, stratified sedimentary and regularity jointed rocks have properties(physical, mechanical) that vary with direction (${\beta}^{\circ}$) and are said to be anisotropic. The ground in Daegu area consists of shales, clastic sedimentary rocks. These shales have plane anisotropic or transversely isotropy characteristics. Engineering characteristics of shale in Daegu area are investigated by performing a series of rock test to the bedding(${\beta}$ =0, 30, 60, and 90 degrees). The results of tests show that the uniaxial compressive strength is a maximum at ${\beta}$ = 0, $90^{\circ}$ and is a minimum when ${\beta}$ is around 60 degree.

  • PDF

Strength Characteristics of Light-Weight Cement mind Marine Clay with Foam (경량기포혼합 준설토의 강도특성)

  • 박건태;김주철;윤길림;이종규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.483-490
    • /
    • 2002
  • A massive amount of marine clay produced as dredging of coast and sea bed is often dumped in open sea and filled in pond. The treatment of marine clay demand a large area and make fatal environmental problems for echo system. This research work intend to manufacture a light-weight landfill materials which are produced by mixing the dredged marine clay with various amount cement and foam. An extensive Uniaxial and Triaxial compression test are carried out to investigate the strength characteristics of the light-weight cement mixed marine clay with foam under various test conditions. The results indicated that the required unit weight has been achieved with negligible change after 28days curing time in water. It is also recognized that the compressive strength of light-weight landfill materials linearly decrease with increasing initial water content, and the rate of strength decrease with increasing initial water content in water curing was smaller than that of air curing Futhermore, the rate of strength decreased with increasing initial water content, however, the rate become smaller as cement content increased.

  • PDF

A Study on Residual Stress Characteristics for Joint of Rock in Ring Shear Tests (링 전단시험기를 이용한 암석절리의 잔류강도 특성에 관한 연구)

  • 권준욱;김선명;윤지선
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.35-41
    • /
    • 2000
  • Residual stress is defined as a minimum stress with a large displacement of specimens and the residual stress after peak shear stress appears with displacement volume but there is no provision to select the residual stress. In the previous study, residual stress was recorded when the change of shear load is small in the condition of the strain more than 15%. But, in this study, hyperbolic function((No Abstract.see full/text), b=experimental constant) of soil test is adapted to joint of rock and the propriety is investigated. In a landslide and landsliding of artificial slope, wedge failure of tunnel with a large displacement, tests are simulated from peak stress to residual stress for safety analysis. But now. direct shear stress and triaxial compressive tests are usually performed to find out characteristics of shear stress about joint. Although these tests get a small displacement, that data of peak stress and residual stress are used for safety analysis. In this study, we tried to determine failure criteria for joints of rock using ring shear test machine. The residual stress following shear behavior was determined by the result of ring shear test and direct shear test. In conclusion, after comparing the results of the two test, we found that cohesion(c) and internal friction angle(ø) of ring shear test are 30% and 22% respectively of those of the direct shear test.

  • PDF

Development and Calibration of a Permanent Deformation Model for Asphalt Concrete Based on Shear Properties (아스팔트 콘크리트의 전단 물성을 고려한 영구변형 모형 개발 및 보정)

  • Lee, Hyun-Jong;Baek, Jong-Eun;Li, Qiang
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.61-70
    • /
    • 2011
  • This study developed a permanent deformation model for asphalt concrete based on shear properties. Repeated load triaxial compression (RLTC), triaxial compressive strength, and indirect tension strength tests were performed for the three types of asphalt mixtures at various loading and temperature conditions to correlate shear properties of asphalt mixtures to rutting performance. For the given mixtures, as testing temperature increased, cohesion decreased, but friction angle was insensitive to temperature at $40^{\circ}C$ or higher. It was observed that deviatoric stress, confining pressure, temperature, and load frequency affected the permanent deformation of asphalt mixtures significantly. The permanent deformation model based on shear stress to strength ratio and loading time was developed using the laboratory test results and calibrated using accelerated pavement test data. The proposed model was able to predict the permanent deformation of the asphalt mixtures in a wide range of loading and temperature conditions with constant model coefficients.

Laboratory Mix Design of C.S.G Method (C.S.G 공법의 실내 배합설계)

  • Kim Ki-Young;Jeon Je-Sung;Kim Yong-Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.5
    • /
    • pp.27-37
    • /
    • 2006
  • Cemented Sand and Gravel (C.S.G) method has become increasingly popular in Japan and throughout the world as a construction method and material. This method is favorably used for cofferdam and large dam because a quarry and aggregate plant facility can be diminished. Also, this method can reduce construction cost, work duration and destruction of environment. In this paper, a methodology for C.S.G mix design based on so-called soil mechanics approach is proposed for trapezoid-shaped dam. The methodology consists of selection of a suitable aggregate, introduction of compaction method, processing to prepare standard specimens, and determination of mix portions. Also, unconfined compressive strength tests and large triaxial compression tests are performed. From the results of the test, correlation equation among strength, elastic modulus and unit cement is proposed.