• Title/Summary/Keyword: tremolite

Search Result 73, Processing Time 0.026 seconds

A Study on Several Minerals Contaminated with Asbestiform Fibers in Korea (우리나라 일부 광물중 석면섬유의 함유에 대한 조사)

  • Choi, Jung Keun;Paek, Do Myung;Paik, Nam Won;Hisanaga, Naomi;Sakai, Kiyoshi
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.8 no.2
    • /
    • pp.254-263
    • /
    • 1998
  • A worker employed in a serpentine mine was found developed mesothelioma as the first case of Korea in 1997. Asbestos was known as a causative agent for mesothelioma. Thus, asbestos contamination in mines could be a big health threat to those workers who were unknowingly exposed. However, there was no report that any minerals found in Korea contained asbestos. This study was carried out to find the presence of any asbestiform fibers in minerals which could be obtained in Korean mines. We examined fifteen minerals from 44 mines which were suspected contaminated with asbestiform fibers. Asbestiform analysis was done with high resolution transmission electron microscope(TEM), with energy dispersive X-ray spectroscope(EDX) and X-ray diffraction(XRD) analyses. Among asbestiform fibers, chrysotile was found in chrysotile, serpentine, talc and pyrophylite specimens from 11 mines. Tremolite was found in tremolite and talc specimens from three mines. Mordenite was found in zeolite specimens from two mines. Wallastonite and sepiolite were found in wallastonite and sepiolite specimens respectively. Crocidolite, antigorite and actinolite were found from talc specimens. But no asbestiform fiber contaminants were found in doromite, vermiculite, limestone, marble, gypsum, kaolin, and clary specimens. Thus, these asbestiform fibers such as such as chrysotile, tremolite, mordenite, crocidolite, antigorite and actinolite could be the responsible agents for the health hazards such as mesothelioma and other cancers.

  • PDF

Morphological Diversity of Tremolite-actinolite Series Amphiboles with Implications to the Evaluation of Naturally Occurring Asbestos (투각섬석-양기석 계열 각섬석의 형태적 다양성과 자연 석면 평가에서의 의미)

  • Jeong, Gi-Young;Choi, Jin-Beom
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.95-104
    • /
    • 2012
  • Electron microscopy of the tremolite-actinolite series amphiboles from the naturally occurring asbestos locality showed the morphological diversity including fibrous, acicular, and prismatic. Very thin, long, and flexible fibers of constant width form ropy bundles or mats. Acicular particles are slightly thick, long, elastic, and easily separated from the bundle of parallel rods. Acicular fragments of lower aspect ratio are formed during the crushing of the amphibole prism. Morphological features of the amphiboles are different depending on their localities and vary in a specimen. Morphological continuum between amphibole fiber and prism requires the establishment of reliable identification criterions and sample preparation protocol based on the relation between carcinogenicity and morphological features.

Mineralogical Characteristics of Naturally Occurring Asbestos (NOA) at Daero-ri, Seosan, Chungnam, Korea (충남 서산 대로리 일대 자연발생석면의 광물학적 특성)

  • Jung, Haemin;Shin, Joodo;Kim, Yumi;Park, Jaebong;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.47 no.5
    • /
    • pp.467-477
    • /
    • 2014
  • Naturally occurring asbestos (NOA) occurs in rocks and soils as a result of natural weathering and human activities. The asbestos have been associated with ultramafic and mafic rocks, and carbonate rock. The previous studies on NOA were mainly limited to ultramafic and mafic rock-hosted asbestos in Korea. But, studies on carbonatehosted asbestos are relatively rare. Therefore, the purposes of this study were to investigate mineralogical characteristics of carbonate-hosted and metapelite-hosted NOA and to examine genesis of NOA occurred in the both rocks. The study area was Daerori, Seosan, Chungnam Province, Korea. The major rock formation consisted of limestone and schist which have been known to contain asbestos. Sampling was performed at outcrop which contained carbonate rock showing acicular asbestos crystals as well as pegmatitic intrusion that contacted with carbonate rock. PLM, XRD, EPMA, and EDS analyses were used to characterize mineral assemblages, mineralogical characteristics, and crystal habits of amphiboles and other minerals. BSEM images were also used to examine the genesis of asbestos minerals. The amphibole group was observed in all of the carbonate rocks, and actinolite and tremolite were identified in all rocks. These mineral habits were mainly micro-acicular crystals or secondary asbestiform minerals on the surface of non-asbestiform minerals appearing split end of columnar crystals produced by weathering. BSEM images showed residual textures of samples. The residual textures of carbonate rocks showed dolomite-tremolite-diopside mineral assemblages that formed during prograde metasomatism stage. Some carbonate rock also showed diopside-tremolite-talc mineral assemblages which were formed during retrograde metasomatism stage, as the residual textures. In result the presence of asbestos actinolite-tremolite in the carbonate rocks were confirmed in the areas where actinolite-tremolite asbestos was influenced by low temperature hydrothermal solution during metasomatism stage. These asbestos minerals showed the acicular asbestiform minerals, but even non-asbestiform minerals, a bundle or columnar shape, could transform to asbestiform minerals as potential NOA by weathering because the end of columnar shape of non-asbestiform minerals appeared as multiple acicular shaped fibers.

Changes of Mineralogical Characteristics of Asbestos by Heat Treatment (열처리에 따른 석면의 광물학적 특성변화)

  • Jeong, Hyeonyi;Moon, Wonjin;Yoon, Sungjun;Kim, Yumi;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.47 no.5
    • /
    • pp.507-515
    • /
    • 2014
  • Asbestos is designated as carcinogen minerals. Detoxification of asbestos is being conducted by physical and chemical treatments that lead the formation of non-fibrous mineral particles or phase transitions. Major researches have been performed on mineralogical properties of asbestos and possibilities of detoxification in Korea. More specific studies are needed to prove the form and crystal structure changes during the detoxification of asbestos via heat treatment. Therefore, we studied thermal effects on mineralogical characteristics of chrysotile and asbestiform tremolite using electron microscopy investigation. Electron microscopy investigation showed chrysotile fibers were fully transformed into rod-shaped forsterite at $850^{\circ}C$ in 2 hours, and asbestiform tremolite fibers were converted into non-fibrous diopside at $1050^{\circ}C$ in 2 hours. Fibrous asbestos were converted into rod-shaped minerals, which are non-asbestiform. However, compositions of both minerals were not changed before and after heat treatment. These results indicate that thermal treatment of asbestos completely broke down asbestos structure due to dehydroxylation and recrystallization. Thus, electron microscopy investigation can provide the useful information of shapes, crystal structure, and chemistries of the asbestos for the detoxification.

충주부근 활석 광상의 성인

  • 김형식;조동수
    • The Journal of the Petrological Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.95-103
    • /
    • 1993
  • The geology of the talc ore deposits in the Chungju area consists of the Kyemyeongsan Formation, the Munjuri Formation, the Daehyangsan Quartzite, the Hyangsanni Dolomite, and the basic rocks of the Ogcheon belt. The talc ore occurs in the Hyangsanni Dolomite near the Daehyangsan Quartzite The mineral assemblages in the Hyangsanni Dolomite are \circled1calcite-tremolite-talc-quartz, \circled2calcite-talc-quartz, \circled3tremolite-calcite-dolomite, and \circled4calcite-dolomite-phlogopite-chlorite. Talc has almost the ideal composition($X_{Mg}$=Mg/(Fe+Mg)=0.98). Talc was formed in siliceous dolomite by the medium-pressure type regional metamorphism. The evidences for contact metamorphism and/or hydrothermal reaction are not clear. The metamorphic grade of the Hyangsanni Dolomite and its adjacent pelitic or basic rocks near the deposits corresponds to epidote-amphibolite facies or greenschist facies based on the, mineral assemblages of \circled1hornblendebiotite-muscovite-epidote-quartz \circled2biotite-chlorite-quartz, and \circled3hornblende-actinolite-plagioclasequartz. The formation of the talc deposits were caused by the following reactions due to greenschist facies metamorphism of siliceous-dolomitic rocks in the Hyansanni Dolomite. (I) 3 dolomite+4 quartz+$H_2O$= talc+ 3 calcite +3 $CO_2$; (11) 3 tremolite+ 2 $H_2O$+ 6 $CO_2$= 5 talc+ 6 calcite + 4 quartz. The minimum temperature of the talc-tremolite-quartz assemblage is about $434^{\circ}C$ from calcite thermometry and the carbon dioxide mole fraction in metamorphic fulid($X_{$CO_2$}$) is about 0.1 at assumed pressure, 3 kbar.

  • PDF

Occurrence and Mineralogy of Serpentine Minerals in the Calc-silicate Rock Sheets from the Bonghwa Area, Kyungsangbuk-do (경북 봉화지역의 석회규산염층에서 산출되는 사문석광물의 산상 및 광물학적 특성)

  • Bae, Sung-Woo;Hwang, Jin-Yeon;Lee, Son-Kap;Kwack, Kyu-Won;Yoon, Ji-Hae;Cho, Sung-Hwi
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.85-98
    • /
    • 2008
  • Calc-silicate rock sheet occurs within the Precambrian metasedimentary rocks in Bonghwa area, Kyungsangbuk-do, Korea. The calc-silicate rock runs parallel to bedding plane with $14{\sim}18$ meters in width. Calcite, dolomite, serpentine and tremolite are occurred as major minerals and talc is occurred as a miner mineral. Serpentine mainly occurs in the upper part and tremolite occurs in lower part of calc-silicate rock sheet. Colors of calc-silicate rock change to deeper green with increasing amounts of serpentine mineral. XRD, FT-IR analyses indicates that serpentine mineral is antigorite. Platy structure of antigorite is well observed by SEM analysis. EPMA data indicates that chemical composition of antigorite is very close to ideal ($SiO_2$: 44.3 wt% and MgO: 40.8 wt%). The chemical formula of antigorite is calculated as $Mg_{2.82}Al_{0.04}Fe^{3+}_{0.04}Si_{2.05}O_5(OH)_4$. From careful study by comparing mineralogical analysis data and occurrence, calc-silicate rock sheet was formed by metamorphism of calcareous sedimentary rocks having different mineralogical and chemical compositions. It is considered that the host rock of serpentine enriched upper part was more Mg-rich rocks than the host rocks of tremolite enriched lower part.

Petrological and Mineralogical Characteristics of Amphibolite Used as Rock Bowl and Pot: Implications for Its Utility and Stability (음식 용기로 사용하는 각섬암의 암석-광물학적 특성: 그 효용성과 안정성에 대한 고찰)

  • Kim, Hyeong-Soo;Choi, Ho-Jeong
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.154-165
    • /
    • 2008
  • Rock bowls and pots used in restaurants are one of the popular usages of natural rocks in Korea. Most rock bowls and pots are made of Mg- and Ca-rich amphibolite composed of hornblende, actinolite, tremolite, diopside, plagioclase. Hornblende occurs as prismatic crystal habit, and belongs to Mg-hornblende to tschermakite. Actinolite and tremolite occur as acicular form (aspect ratio $0.10{\sim}0.13$), and ranges 0.65 to 0.90 in Mg/(Mg+Fe) ratio. These acicular actinolite and tremolite are non-asbestos minerals. However to use of rocks containing these minerals as tableware it is needed to regulatory guidelines for stability and utility based on petrological and mineralogical characteristics. Discrepancy of rock occurrence and mineral chemistry between commercial rock bowls and original rocks indicate that most rock bowls are made of uncertain amphibolite in original location. Consequently, there is a potential risk to use inappropriate amphibolites as tableware. Therefore, it is needed to systematically research on geology and biology, and manage commercial rock bowls and pots used in Korean restaurants.

Development of An Expert System for Classifying and Identifying Asbestos Fibers in the Indoor Air (실내공기 중 석면 섬유의 분류 및 확인을 위한 전문가 시스템의 개발)

  • 김수환;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.6
    • /
    • pp.703-712
    • /
    • 1999
  • In order to determine the number concentration of asbestos, it is initially necessary to develop a method to identify the type of asbestos. Thus a SEM/EDX was used to obtain both physical and chemical information from known asbestos samples as reference samples. Based on these information, we could make a source profile matrix consisted of a glass fiber and 3 other types of asbestos such as chrysotile, crocidolite, and tremolite. After collinearity test was performed for these sources, we could successfully develop an expert system by C-language to separate and to identify various unknown types of fiber particles. The expert system was perfectly self-verified with original reference data. Then the program was extensively applied to survey indoor and outdoor environment such as a residential area, an elementary school, and underground store, and an auto junkyard. As a result for surveying, a total of 442 individual fibrous particles were well classified into 4 types of particle classes above mentioned; 5.4% of chrysotile, 4.1% of crocidolite, 3.6% of glass fiber, and 86.9% of unknown fibers in terms of number concentration. However, tremolite was not detected in the study sites. All the samples were satisfied with the recommendation level of 0.01 f/cc.

  • PDF

Occurrences of Asbestos within Gapyeong Serpentinite Mines and Characteristics of Host Rocks (가평 사문암 광산의 석면 산출의 산상과 모암의 특성)

  • Song, Suckhwan;Kang, Joongu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.3
    • /
    • pp.253-266
    • /
    • 2016
  • Objectives: This study is for characteristics of asbestos occurrence (NOA, naturally occurring asbestos) from the Gapyeong area and its host rocks, serpentinites. Methods: Representative samples are collected from the serpentinite bodies, following degrees of hydrothermal alteration and metamorphism, after about 2 year field trips. Mineralogical, morphological and optical characteristics of the asbestos and host rocks are confirmed by PLM, XRD EPMA and SEM results. Results: The serpentinites are dunites and harzburgites, and host asbestos, including chrysotile, tremolite and actinolite. The asbestos chrysotiles are found as veins ranging from several millimeters to several centimeters in thickness, while asbestos-tremolite and -actinolite occur along cracks and fractures ranging up to ten centimeters in thickness. The chryostiles occur mainly as cross and slip fibers, while the amphibole asbestos is found as vein, slip and oblique fibers. More tremolitic grains are colorless and commonly show elongated or fiber shapes, whereas the magnesio hornblende grains mainly show light green and occur as subhedral to euhedral diamond grains. Conclusions: Overall characteristics of serpentinites from the Gapyeong area are similar to worldwide orogenic-related Alpine type ultramafic rocks serpentinized and serpentinites in South Chungcheong-do Province, Korea, and occurrences of asbestos are similar to those of the ultramafic bodies in South Chungcheong-do Province.

Mineralogical Characteristics of Carbonate Rock-Hosted Naturally Occurring Asbestos from Asan, Muju, Jangsu Areas (국내 탄산염암 지역(아산, 무주, 장수)에서 산출되는 자연발생석면의 광물학적 특성)

  • Shin, Eunhea;Jeong, Hyeonyi;Baek, Jiyeon;Jeong, Hyewon;Park, Jaebong;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.51 no.4
    • /
    • pp.309-322
    • /
    • 2018
  • Naturally occurring asbestos (NOA) occurs in rocks and soils as a result of natural weathering and human activities. It is proved that inhalation of asbestos fibers can lead to increase risk of developing several diseases such as lung cancer and malignant mesothelioma. The parent rocks of asbestos have been mainly associated with (ultra)mafic and carbonate rock. The previous studies on NOA were mainly limited to (ultra)mafic rock-hosted asbestos, but studies on carbonate rock-hosted asbestos are relatively rare in S. Korea. Therefore, this study was aimed to examine mineralogical characteristics of carbonate rock-hosted NOA at three sites including Muju and Jangsu, Jeonbuk province and Asan, Chungnam province. Types of rocks at the three sites mainly consisted of Precambrian metasedimentary rocks, carbonate rock, and Cretaceous and Jurassic granites. Asbestos-containing carbonate rock samples were obtained for mineralogical characterization. XRD, PLM, EPMA, SEM and EDS analyses were used to characterize mineralogical characteristics of the carbonate rock-hosted NOA. From the carbonate rock, fibrous minerals were occurred acicular and columnar forms in the three sites. Fibrous minerals were composed of mainly tremolite and associated minerals included possibly asbestos containing materials (ACM) such as talc, vermiculite, and sepiolite. The length and aspect ratios of tremolite were similar to the standard asbestiform (length >$5{\mu}m$, length:width = 3:1). These results indicate that both non-asbestiform and asbestiform tremolite with acicular forms occurred in carbonate rocks at three sites. Geological and geochemical characteristics and mineral assemblages indicate tremolite and associated minerals might be formed by hydrothermal alternation and/or hydrothermal veins of carbonate rocks due to intrusion of acidic igneous rocks.