• Title/Summary/Keyword: tree-based models

Search Result 437, Processing Time 0.025 seconds

Prediction of drowning person's route using machine learning for meteorological information of maritime observation buoy

  • Han, Jung-Wook;Moon, Ho-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.3
    • /
    • pp.1-12
    • /
    • 2022
  • In the event of a maritime distress accident, rapid search and rescue operations using rescue assets are very important to ensure the safety and life of drowning person's at sea. In this paper, we analyzed the surface layer current in the northwest sea area of Ulleungdo by applying machine learning such as multiple linear regression, decision tree, support vector machine, vector autoregression, and LSTM to the meteorological information collected from the maritime observation buoy. And we predicted the drowning person's route at sea based on the predicted current direction and speed information by constructing each prediction model. Comparing the various machine learning models applied in this paper through the performance evaluation measures of MAE and RMSE, the LSTM model is the best. In addition, LSTM model showed superior performance compared to the other models in the view of the difference distance between the actual and predicted movement point of drowning person.

Crop Yield Estimation Utilizing Feature Selection Based on Graph Classification (그래프 분류 기반 특징 선택을 활용한 작물 수확량 예측)

  • Ohnmar Khin;Sung-Keun Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1269-1276
    • /
    • 2023
  • Crop estimation is essential for the multinational meal and powerful demand due to its numerous aspects like soil, rain, climate, atmosphere, and their relations. The consequence of climate shift impacts the farming yield products. We operate the dataset with temperature, rainfall, humidity, etc. The current research focuses on feature selection with multifarious classifiers to assist farmers and agriculturalists. The crop yield estimation utilizing the feature selection approach is 96% accuracy. Feature selection affects a machine learning model's performance. Additionally, the performance of the current graph classifier accepts 81.5%. Eventually, the random forest regressor without feature selections owns 78% accuracy and the decision tree regressor without feature selections retains 67% accuracy. Our research merit is to reveal the experimental results of with and without feature selection significance for the proposed ten algorithms. These findings support learners and students in choosing the appropriate models for crop classification studies.

A Comparative Study of Prediction Models for College Student Dropout Risk Using Machine Learning: Focusing on the case of N university (머신러닝을 활용한 대학생 중도탈락 위험군의 예측모델 비교 연구 : N대학 사례를 중심으로)

  • So-Hyun Kim;Sung-Hyoun Cho
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.12 no.2
    • /
    • pp.155-166
    • /
    • 2024
  • Purpose : This study aims to identify key factors for predicting dropout risk at the university level and to provide a foundation for policy development aimed at dropout prevention. This study explores the optimal machine learning algorithm by comparing the performance of various algorithms using data on college students' dropout risks. Methods : We collected data on factors influencing dropout risk and propensity were collected from N University. The collected data were applied to several machine learning algorithms, including random forest, decision tree, artificial neural network, logistic regression, support vector machine (SVM), k-nearest neighbor (k-NN) classification, and Naive Bayes. The performance of these models was compared and evaluated, with a focus on predictive validity and the identification of significant dropout factors through the information gain index of machine learning. Results : The binary logistic regression analysis showed that the year of the program, department, grades, and year of entry had a statistically significant effect on the dropout risk. The performance of each machine learning algorithm showed that random forest performed the best. The results showed that the relative importance of the predictor variables was highest for department, age, grade, and residence, in the order of whether or not they matched the school location. Conclusion : Machine learning-based prediction of dropout risk focuses on the early identification of students at risk. The types and causes of dropout crises vary significantly among students. It is important to identify the types and causes of dropout crises so that appropriate actions and support can be taken to remove risk factors and increase protective factors. The relative importance of the factors affecting dropout risk found in this study will help guide educational prescriptions for preventing college student dropout.

A Kidnapping Detection Using Human Pose Estimation in Intelligent Video Surveillance Systems

  • Park, Ju Hyun;Song, KwangHo;Kim, Yoo-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.8
    • /
    • pp.9-16
    • /
    • 2018
  • In this paper, a kidnapping detection scheme in which human pose estimation is used to classify accurately between kidnapping cases and normal ones is proposed. To estimate human poses from input video, human's 10 joint information is extracted by OpenPose library. In addition to the features which are used in the previous study to represent the size change rates and the regularities of human activities, the human pose estimation features which are computed from the location of detected human's joints are used as the features to distinguish kidnapping situations from the normal accompanying ones. A frame-based kidnapping detection scheme is generated according to the selection of J48 decision tree model from the comparison of several representative classification models. When a video has more frames of kidnapping situation than the threshold ratio after two people meet in the video, the proposed scheme detects and notifies the occurrence of kidnapping event. To check the feasibility of the proposed scheme, the detection accuracy of our newly proposed scheme is compared with that of the previous scheme. According to the experiment results, the proposed scheme could detect kidnapping situations more 4.73% correctly than the previous scheme.

Proactive Retrieval Method using Ontology in Context-aware Environment (상황 인식 환경에서 온톨로지를 이용한 프로액티브 검색 기법)

  • Kim, Sung-Rim;Kwon, Joon-Hee
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.3
    • /
    • pp.8-13
    • /
    • 2007
  • The context-aware environment focuses on recognizing the context and physical entities. For this reason, there has been an increasement in research of context-aware computing environment. Ontology-based context models are widely used in ubiquitous environment because of context sharing and reusing. In this paper, we propose a proactive retrieval method using ontology in context-aware environment. The method use a concept level of hierarchical concept tree in ontology for more efficient retrieval. This paper describes the proactive retrieval method and ontology model. Several experiments are performed and the results verify that the proposed method's efficiency is better than other existing methods.

Traffic Flow Estimation System using a Hybrid Approach

  • Aung, Swe Sw;Nagayama, Itaru;Tamaki, Shiro
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.4
    • /
    • pp.281-291
    • /
    • 2017
  • Nowadays, as traffic jams are a daily elementary problem in both developed and developing countries, systems to monitor, predict, and detect traffic conditions are playing an important role in research fields. Comparing them, researchers have been trying to solve problems by applying many kinds of technologies, especially roadside sensors, which still have some issues, and for that reason, any one particular method by itself could not generate sufficient traffic prediction results. However, these sensors have some issues that are not useful for research. Therefore, it may not be best to use them as stand-alone methods for a traffic prediction system. On that note, this paper mainly focuses on predicting traffic conditions based on a hybrid prediction approach, which stands on accuracy comparison of three prediction models: multinomial logistic regression, decision trees, and support vector machine (SVM) classifiers. This is aimed at selecting the most suitable approach by means of integrating proficiencies from these approaches. It was also experimentally confirmed, with test cases and simulations that showed the performance of this hybrid method is more effective than individual methods.

A Study on Preventive Maintenance of Container Cranes (컨테이너 크레인의 예방정비 일정에 관한 연구)

  • Yun, Won-Young;Son, Bum-Shin;Choi, Yong-Seok
    • Journal of Navigation and Port Research
    • /
    • v.33 no.6
    • /
    • pp.429-436
    • /
    • 2009
  • Container cranes are main equipments to load and unload containers to container ships at container terminals. If a crane breakdowns, it can reduce the productivity of container terminals. This paper deals with Preventive Maintenance (PM) schedules for the container cranes. The cranes consist of many parts and we analyze the structure of a container crane using the tree models. Next, we apply a Genetic Algorithm (GA) for determining optimal PM schedule and evaluate the performance of the proposed method through simulation system Finally, we explain how to adjust the PM schedule found in industry based on work schedules.

RELIABILITY ANALYSIS OF DIGITAL SYSTEMS IN A PROBABILISTIC RISK ANALYSIS FOR NUCLEAR POWER PLANTS

  • Authen, Stefan;Holmberg, Jan-Erik
    • Nuclear Engineering and Technology
    • /
    • v.44 no.5
    • /
    • pp.471-482
    • /
    • 2012
  • To assess the risk of nuclear power plant operation and to determine the risk impact of digital systems, there is a need to quantitatively assess the reliability of the digital systems in a justifiable manner. The Probabilistic Risk Analysis (PRA) is a tool which can reveal shortcomings of the NPP design in general and PRA analysts have not had sufficient guiding principles in modelling particular digital components malfunctions. Currently digital I&C systems are mostly analyzed simply and conventionally in PRA, based on failure mode and effects analysis and fault tree modelling. More dynamic approaches are still in the trial stage and can be difficult to apply in full scale PRA-models. As basic events CPU failures, application software failures and common cause failures (CCF) between identical components are modelled.The primary goal is to model dependencies. However, it is not clear which failure modes or system parts CCF:s should be postulated for. A clear distinction can be made between the treatment of protection and control systems. There is a general consensus that protection systems shall be included in PRA, while control systems can be treated in a limited manner. OECD/NEA CSNI Working Group on Risk Assessment (WGRisk) has set up a task group, called DIGREL, to develop taxonomy of failure modes of digital components for the purposes of PRA. The taxonomy is aimed to be the basis of future modelling and quantification efforts. It will also help to define a structure for data collection and to review PRA studies.

Data Mining for Knowledge Management in a Health Insurance Domain

  • Chae, Young-Moon;Ho, Seung-Hee;Cho, Kyoung-Won;Lee, Dong-Ha;Ji, Sun-Ha
    • Journal of Intelligence and Information Systems
    • /
    • v.6 no.1
    • /
    • pp.73-82
    • /
    • 2000
  • This study examined the characteristicso f the knowledge discovery and data mining algorithms to demonstrate how they can be used to predict health outcomes and provide policy information for hypertension management using the Korea Medical Insurance Corporation database. Specifically this study validated the predictive power of data mining algorithms by comparing the performance of logistic regression and two decision tree algorithms CHAID (Chi-squared Automatic Interaction Detection) and C5.0 (a variant of C4.5) since logistic regression has assumed a major position in the healthcare field as a method for predicting or classifying health outcomes based on the specific characteristics of each individual case. This comparison was performed using the test set of 4,588 beneficiaries and the training set of 13,689 beneficiaries that were used to develop the models. On the contrary to the previous study CHAID algorithm performed better than logistic regression in predicting hypertension but C5.0 had the lowest predictive power. In addition CHAID algorithm and association rule also provided the segment characteristics for the risk factors that may be used in developing hypertension management programs. This showed that data mining approach can be a useful analytic tool for predicting and classifying health outcomes data.

  • PDF

Comparative Analysis of Machine Learning Algorithms for Healthy Management of Collaborative Robots (협동로봇의 건전성 관리를 위한 머신러닝 알고리즘의 비교 분석)

  • Kim, Jae-Eun;Jang, Gil-Sang;Lim, KuK-Hwa
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.4
    • /
    • pp.93-104
    • /
    • 2021
  • In this paper, we propose a method for diagnosing overload and working load of collaborative robots through performance analysis of machine learning algorithms. To this end, an experiment was conducted to perform pick & place operation while changing the payload weight of a cooperative robot with a payload capacity of 10 kg. In this experiment, motor torque, position, and speed data generated from the robot controller were collected, and as a result of t-test and f-test, different characteristics were found for each weight based on a payload of 10 kg. In addition, to predict overload and working load from the collected data, machine learning algorithms such as Neural Network, Decision Tree, Random Forest, and Gradient Boosting models were used for experiments. As a result of the experiment, the neural network with more than 99.6% of explanatory power showed the best performance in prediction and classification. The practical contribution of the proposed study is that it suggests a method to collect data required for analysis from the robot without attaching additional sensors to the collaborative robot and the usefulness of a machine learning algorithm for diagnosing robot overload and working load.