• Title/Summary/Keyword: tree-based models

Search Result 437, Processing Time 0.027 seconds

Insights gained from applying negate-down during quantification for seismic probabilistic safety assessment

  • Kim, Ji Suk;Kim, Man Cheol
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2933-2940
    • /
    • 2022
  • Approximations such as the delete-term approximation, rare event approximation, and minimal cutset upper bound (MCUB) need to be prudently applied for the quantification of a seismic probabilistic safety assessment (PSA) model. Important characteristics of seismic PSA models indicate that preserving the success branches in a primary seismic event tree is necessary. Based on the authors' experience in modeling and quantifying plant-level seismic PSA models, the effects of applying negate-down to the success branches in primary seismic event trees on the quantification results are summarized along with the following three insights gained: (1) there are two competing effects on the MCUB-based quantification results: one tending to increase and the other tending to decrease; (2) the binary decision diagram does not always provide exact quantification results; and (3) it is identified when the exact results will be obtained, and which combination provides more conservative results compared to the others. Complicated interactions occur in Boolean variable manipulation, approximation, and the quantification of a seismic PSA model. The insights presented herein can assist PSA analysts to better understand the important theoretical principles associated with the quantification of seismic PSA models.

Predicting Reports of Theft in Businesses via Machine Learning

  • JungIn, Seo;JeongHyeon, Chang
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.499-510
    • /
    • 2022
  • This study examines the reporting factors of crime against business in Korea and proposes a corresponding predictive model using machine learning. While many previous studies focused on the individual factors of theft victims, there is a lack of evidence on the reporting factors of crime against a business that serves the public good as opposed to those that protect private property. Therefore, we proposed a crime prevention model for the willingness factor of theft reporting in businesses. This study used data collected through the 2015 Commercial Crime Damage Survey conducted by the Korea Institute for Criminal Policy. It analyzed data from 834 businesses that had experienced theft during a 2016 crime investigation. The data showed a problem with unbalanced classes. To solve this problem, we jointly applied the Synthetic Minority Over Sampling Technique and the Tomek link techniques to the training data. Two prediction models were implemented. One was a statistical model using logistic regression and elastic net. The other involved a support vector machine model, tree-based machine learning models (e.g., random forest, extreme gradient boosting), and a stacking model. As a result, the features of theft price, invasion, and remedy, which are known to have significant effects on reporting theft offences, can be predicted as determinants of such offences in companies. Finally, we verified and compared the proposed predictive models using several popular metrics. Based on our evaluation of the importance of the features used in each model, we suggest a more accurate criterion for predicting var.

Use of automated artificial intelligence to predict the need for orthodontic extractions

  • Real, Alberto Del;Real, Octavio Del;Sardina, Sebastian;Oyonarte, Rodrigo
    • The korean journal of orthodontics
    • /
    • v.52 no.2
    • /
    • pp.102-111
    • /
    • 2022
  • Objective: To develop and explore the usefulness of an artificial intelligence system for the prediction of the need for dental extractions during orthodontic treatments based on gender, model variables, and cephalometric records. Methods: The gender, model variables, and radiographic records of 214 patients were obtained from an anonymized data bank containing 314 cases treated by two experienced orthodontists. The data were processed using an automated machine learning software (Auto-WEKA) and used to predict the need for extractions. Results: By generating and comparing several prediction models, an accuracy of 93.9% was achieved for determining whether extraction is required or not based on the model and radiographic data. When only model variables were used, an accuracy of 87.4% was attained, whereas a 72.7% accuracy was achieved if only cephalometric information was used. Conclusions: The use of an automated machine learning system allows the generation of orthodontic extraction prediction models. The accuracy of the optimal extraction prediction models increases with the combination of model and cephalometric data for the analytical process.

Personalized insurance product based on similarity (유사도를 활용한 맞춤형 보험 추천 시스템)

  • Kim, Joon-Sung;Cho, A-Ra;Oh, Hayong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1599-1607
    • /
    • 2022
  • The data mainly used for the model are as follows: the personal information, the information of insurance product, etc. With the data, we suggest three types of models: content-based filtering model, collaborative filtering model and classification models-based model. The content-based filtering model finds the cosine of the angle between the users and items, and recommends items based on the cosine similarity; however, before finding the cosine similarity, we divide into several groups by their features. Segmentation is executed by K-means clustering algorithm and manually operated algorithm. The collaborative filtering model uses interactions that users have with items. The classification models-based model uses decision tree and random forest classifier to recommend items. According to the results of the research, the contents-based filtering model provides the best result. Since the model recommends the item based on the demographic and user features, it indicates that demographic and user features are keys to offer more appropriate items.

A Comparison of Modeling Methods for a Luxuriousness Model of Mobile Phones (감성모델링 기법 차이에 따른 휴대전화 고급감 모델의 비교 평가)

  • Kim, In-Gi;Yun, Myeong-Hwan;Lee, Cheol
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.161-172
    • /
    • 2006
  • This study aims to compare and contrast the Kansei modeling methods for building a luxuriousness model that people feel about appearance of mobile phones. For the evaluation based on Kansei engineering approaches, 15 participants were employed to evaluate 18 mobile phones using a questionnaire. The results of evaluation were analyzed to build luxuriousness models through quantification I method, neural network, and decision tree method, respectively. The performance of Kansei modeling methods was compared and contrasted in terms of accuracy and predictability. The result of comparison of modeling methods indicated that model accuracy and predictability was closely related to the number of variables and data size. It was also revealed that quantification I method was the best in terms of model accuracy while decision tree method was the best modeling method with small variance in terms of predictability. However, it was empirically found that quantification I method showed extremely unstable predictability with small number of data. Consequently, it is expected that the research findings of this study might be utilized as a guideline for selecting proper Kansei modeling method.

A new replaceable fuse for moment resisting frames: Replaceable bolted reduced beam section connections

  • Ozkilic, Yasin O.
    • Steel and Composite Structures
    • /
    • v.35 no.3
    • /
    • pp.353-370
    • /
    • 2020
  • This paper describes a new type of replaceable fuse for moment resisting frames. Column-tree connections with beam splice connections are frequently preferred in the moment resisting frames since they eliminate field welding and provide good quality. In the column-tree connections, a part of the beam is welded to the column in the shop and the rest of the beam is bolted with the splice connection in the field. In this study, a replaceable reduced beam section (R-RBS) connection is proposed in order to eliminate welding process and facilitate assembly at the site. In the proposed R-RBS connection, one end is connected by a beam splice connection to the beam and the other end is connected by a bolted end-plate connection to the column. More importantly is that the proposed R-RBS connection allows the replacement of the damaged R-RBS easily right after an earthquake. Pursuant to this goal, experimental and numerical studies have been undertaken to investigate the performance of the R-RBS connection. An experimental study on the RBS connection was used to substantiate the numerical model using ABAQUS, a commercially available finite element software. Additionally, five different finite element models were developed to conduct a parametric study. The results of the analysis were compared in terms of the moment and energy absorption capacities, PEEQ, rupture and tri-axiality indexes. The design process as well as the optimum dimensions of the R-RBS connections are presented. It was also demonstrated that the proposed R-RBS connection satisfies AISC criteria based on the nonlinear finite element analysis results.

Prediction of short-term algal bloom using the M5P model-tree and extreme learning machine

  • Yi, Hye-Suk;Lee, Bomi;Park, Sangyoung;Kwak, Keun-Chang;An, Kwang-Guk
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.404-411
    • /
    • 2019
  • In this study, we designed a data-driven model to predict chlorophyll-a using M5P model tree and extreme learning machine (ELM). The Juksan weir in the Youngsan River has high chlorophyll-a, which is the primary indicator of algal bloom every year. Short-term algal bloom prediction is important for environmental management and ecological assessment. Two models were developed and evaluated for short-term algal bloom prediction. M5P is a classification and regression-analysis-based method, and ELM is a feed-forward neural network with fast learning using the least square estimate for regression. The dataset used in this study includes water temperature, rainfall, solar radiation, total nitrogen, total phosphorus, N/P ratio, and chlorophyll-a, which were collected on a daily basis from January 2013 to December 2016. The M5P model showed that the prediction model after one day had the highest performance power and dropped off rapidly starting with predictions after three days. Comparing the performance power of the ELM model with the M5P model, it was found that the performance power of the 1-7 d chlorophyll-a prediction model was higher. Moreover, in a period of rapidly increasing algal blooms, the ELM model showed higher accuracy than the M5P model.

An Analysis of the Determinants of Government-Funded Defense Companies using a Decision Tree (의사결정나무를 활용한 방산육성지원 수혜기업 결정요인 분석)

  • Gowoon Jeon;Seulah Baek;Jeonghwan Jeon;Donghee Yoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.80-93
    • /
    • 2024
  • This study attempted to analyze the factors that influence the participation of beneficiary companies in the government's defense industry promotion support project. To this end, experimental data were analyzed by constructing a prediction model consisting of highly important variables in beneficiary company decisions among various company information using the decision tree model, one of the data mining techniques. In addition, various rules were derived to determine the beneficiary companies of the government's support project using the analysis results expressed as decision trees. Three policy measures were presented based on the important rules that repeatedly appear in different predictive models to increase the effect of the government's industrial development. Using the analysis methods presented in this study and the determinants of the beneficiary companies of the government support project will help create a sustainable future defense industry growth environment.

Prediction of Safety Grade of Bridges Using the Classification Models of Decision Tree and Random Forest (의사결정나무 및 랜덤포레스트 분류 모델을 이용한 교량 안전등급 예측)

  • Hong, Jisu;Jeon, Se-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.397-411
    • /
    • 2023
  • The number of deteriorated bridges with a service period of more than 30 years has been rapidly increasing in Korea. Accordingly, the importance of advanced maintenance technologies through the predictions of age-induced deterioration degree, condition, and performance of bridges is more and more noticed. The prediction method of the safety grade of bridges was proposed in this study using the classification models of the Decision Tree and the Random Forest based on machine learning. As a result of analyzing these models for the 8,850 bridges located in national roads with various evaluation indexes such as confusion matrix, balanced accuracy, recall, ROC curve, and AUC, the Random Forest largely showed better predictive performance than that of the Decision Tree. In particular, random under-sampling in the Random Forest showed higher predictive performance than that of other sampling techniques for the C and D grade bridges, with the recall of 83.4%, which need more attention to maintenance because of the significant deterioration degree. The proposed model can be usefully applied to rapidly identify the safety grade and to establish an efficient and economical maintenance plan of bridges that have not recently been inspected.

3D Measurement Method Based on Point Cloud and Solid Model for Urban SingleTrees (Point cloud와 solid model을 기반으로 한 단일수목 입체적 정량화기법 연구)

  • Park, Haekyung
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_2
    • /
    • pp.1139-1149
    • /
    • 2017
  • Measuring tree's volume is very important input data of various environmental analysis modeling However, It's difficult to use economical and equipment to measure a fragmented small green space in the city. In addition, Trees are sensitive to seasons, so we need new and easier equipment and quantification methods for measuring trees than lidar for high frequency monitoring. In particular, the tree's size in a city affect management costs, ecosystem services, safety, and so need to be managed and informed on the individual tree-based. In this study, we aim to acquire image data with UAV(Unmanned Aerial Vehicle), which can be operated at low cost and frequently, and quickly and easily quantify a single tree using SfM-MVS(Structure from Motion-Multi View Stereo), and we evaluate the impact of reducing number of images on the point density of point clouds generated from SfM-MVS and the quantification of single trees. Also, We used the Watertight model to estimate the volume of a single tree and to shape it into a 3D structure and compare it with the quantification results of 3 different type of 3D models. The results of the analysis show that UAV, SfM-MVS and solid model can quantify and shape a single tree with low cost and high time resolution easily. This study is only for a single tree, Therefore, in order to apply it to a larger scale, it is necessary to follow up research to develop it, such as convergence with various spatial information data, improvement of quantification technique and flight plan for enlarging green space.