• Title/Summary/Keyword: tree-based models

Search Result 437, Processing Time 0.024 seconds

Multi-Cattle Tracking Algorithm with Enhanced Trajectory Estimation in Precision Livestock Farms

  • Shujie Han;Alvaro Fuentes;Sook Yoon;Jongbin Park;Dong Sun Park
    • Smart Media Journal
    • /
    • v.13 no.2
    • /
    • pp.23-31
    • /
    • 2024
  • In precision cattle farm, reliably tracking the identity of each cattle is necessary. Effective tracking of cattle within farm environments presents a unique challenge, particularly with the need to minimize the occurrence of excessive tracking trajectories. To address this, we introduce a trajectory playback decision tree algorithm that reevaluates and cleans tracking results based on spatio-temporal relationships among trajectories. This approach considers trajectory as metadata, resulting in more realistic and accurate tracking outcomes. This algorithm showcases its robustness and capability through extensive comparisons with popular tracking models, consistently demonstrating the promotion of performance across various evaluation metrics that is HOTA, AssA, and IDF1 achieve 68.81%, 79.31%, and 84.81%.

Using Bayesian tree-based model integrated with genetic algorithm for streamflow forecasting in an urban basin

  • Nguyen, Duc Hai;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.140-140
    • /
    • 2021
  • Urban flood management is a crucial and challenging task, particularly in developed cities. Therefore, accurate prediction of urban flooding under heavy precipitation is critically important to address such a challenge. In recent years, machine learning techniques have received considerable attention for their strong learning ability and suitability for modeling complex and nonlinear hydrological processes. Moreover, a survey of the published literature finds that hybrid computational intelligent methods using nature-inspired algorithms have been increasingly employed to predict or simulate the streamflow with high reliability. The present study is aimed to propose a novel approach, an ensemble tree, Bayesian Additive Regression Trees (BART) model incorporating a nature-inspired algorithm to predict hourly multi-step ahead streamflow. For this reason, a hybrid intelligent model was developed, namely GA-BART, containing BART model integrating with Genetic algorithm (GA). The Jungrang urban basin located in Seoul, South Korea, was selected as a case study for the purpose. A database was established based on 39 heavy rainfall events during 2003 and 2020 that collected from the rain gauges and monitoring stations system in the basin. For the goal of this study, the different step ahead models will be developed based in the methods, including 1-hour, 2-hour, 3-hour, 4-hour, 5-hour, and 6-hour step ahead streamflow predictions. In addition, the comparison of the hybrid BART model with a baseline model such as super vector regression models is examined in this study. It is expected that the hybrid BART model has a robust performance and can be an optional choice in streamflow forecasting for urban basins.

  • PDF

Realistic and Real-Time Modeling of Numerous Trees Using Growing Environment (성장 환경을 활용한 다수의 나무에 대한 사실적인 실시간 모델링 기법)

  • Kim, Jin-Mo;Cho, Hyung-Je
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.3
    • /
    • pp.398-407
    • /
    • 2012
  • We propose a tree modeling method of expressing realistically and efficiently numerous trees distributed on a broad terrain. This method combines and simplifies the recursive hierarchy of tree branch and branch generation process through self-organizing from buds, allowing users to generate trees that can be used more intuitively and efficiently. With the generation process the leveled structure and the appearance such as branch length, distribution and direction can be controlled interactively by user. In addition, we introduce an environment-adaptive model that allows to grow a number of trees variously by controlling at the same time and we propose an efficient application method of growing environment. For the real-time rendering of the complex tree models distributed on a broad terrain, the rendering process, the LOD(level of detail) for the branch surfaces, and shader instancing are introduced through the GPU(Graphics Processing Unit). Whether the numerous trees are expressed realistically and efficiently on wide terrain by proposed models are confirmed through simulation.

RDB-based XML Access Control Model with XML Tree Levels (XML 트리 레벨을 고려한 관계형 데이터베이스 기반의 XML 접근 제어 모델)

  • Kim, Jin-Hyung;Jeong, Dong-Won;Baik, Doo-Kwon
    • Journal of Digital Contents Society
    • /
    • v.10 no.1
    • /
    • pp.129-145
    • /
    • 2009
  • As the secure distribution and sharing of information over the World Wide Web becomes increasingly important, the needs for flexible and efficient support of access control systems naturally arise. Since the eXtensible Markup Language (XML) is emerging as the de-facto standard format of the Internet era for storing and exchanging information, there have been recently, many proposals to extend the XML model to incorporate security aspects. To the lesser or greater extent, however, such proposals neglect the fact that the data for XML documents will most likely reside in relational databases, and consequently do not utilize various security models proposed for and implemented in relational databases. In this paper, we take a rather different approach. We explore how to support security models for XML documents by leveraging on techniques developed for relational databases considering object perspective. More specifically, in our approach, (1) Users make XML queries against the given XML view/schema, (2) Access controls for XML data are specified in the relational database, (3) Data are stored in relational databases, (4) Security check and query evaluation are also done in relational databases, and (5) Controlling access control is executed considering XML tree levels

  • PDF

The impact of the change in the splitting method of decision trees on the prediction power (의사결정나무의 분기법 변화가 예측력에 미치는 영향)

  • Chang, Youngjae
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.4
    • /
    • pp.517-525
    • /
    • 2022
  • In the era of big data, various data mining techniques have been proposed as major analysis methodologies. As complex and diverse data is mass-produced, data mining techniques have attracted attention as a method that forms the foundation of data science. In this paper, we focused on the decision tree, which is frequently used in practice and easy to understand as one of representative data mining methods. Specifically, we analyzed the effect of the splitting method of decision trees on the model performance. We compared the prediction power and structures of decision tree models with different split methods based on various simulated data. The results show that the linear combination split method can improve the prediction accuracy of decision trees in the case of data simulated from nonlinear models with complex structure.

Predicting 30-day mortality in severely injured elderly patients with trauma in Korea using machine learning algorithms: a retrospective study

  • Jonghee Han;Su Young Yoon;Junepill Seok;Jin Young Lee;Jin Suk Lee;Jin Bong Ye;Younghoon Sul;Se Heon Kim;Hong Rye Kim
    • Journal of Trauma and Injury
    • /
    • v.37 no.3
    • /
    • pp.201-208
    • /
    • 2024
  • Purpose: The number of elderly patients with trauma is increasing; therefore, precise models are necessary to estimate the mortality risk of elderly patients with trauma for informed clinical decision-making. This study aimed to develop machine learning based predictive models that predict 30-day mortality in severely injured elderly patients with trauma and to compare the predictive performance of various machine learning models. Methods: This study targeted patients aged ≥65 years with an Injury Severity Score of ≥15 who visited the regional trauma center at Chungbuk National University Hospital between 2016 and 2022. Four machine learning models-logistic regression, decision tree, random forest, and eXtreme Gradient Boosting (XGBoost)-were developed to predict 30-day mortality. The models' performance was compared using metrics such as area under the receiver operating characteristic curve (AUC), accuracy, precision, recall, specificity, F1 score, as well as Shapley Additive Explanations (SHAP) values and learning curves. Results: The performance evaluation of the machine learning models for predicting mortality in severely injured elderly patients with trauma showed AUC values for logistic regression, decision tree, random forest, and XGBoost of 0.938, 0.863, 0.919, and 0.934, respectively. Among the four models, XGBoost demonstrated superior accuracy, precision, recall, specificity, and F1 score of 0.91, 0.72, 0.86, 0.92, and 0.78, respectively. Analysis of important features of XGBoost using SHAP revealed associations such as a high Glasgow Coma Scale negatively impacting mortality probability, while higher counts of transfused red blood cells were positively correlated with mortality probability. The learning curves indicated increased generalization and robustness as training examples increased. Conclusions: We showed that machine learning models, especially XGBoost, can be used to predict 30-day mortality in severely injured elderly patients with trauma. Prognostic tools utilizing these models are helpful for physicians to evaluate the risk of mortality in elderly patients with severe trauma.

Black-Box Classifier Interpretation Using Decision Tree and Fuzzy Logic-Based Classifier Implementation

  • Lee, Hansoo;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.27-35
    • /
    • 2016
  • Black-box classifiers, such as artificial neural network and support vector machine, are a popular classifier because of its remarkable performance. They are applied in various fields such as inductive inferences, classifications, or regressions. However, by its characteristics, they cannot provide appropriate explanations how the classification results are derived. Therefore, there are plenty of actively discussed researches about interpreting trained black-box classifiers. In this paper, we propose a method to make a fuzzy logic-based classifier using extracted rules from the artificial neural network and support vector machine in order to interpret internal structures. As an object of classification, an anomalous propagation echo is selected which occurs frequently in radar data and becomes the problem in a precipitation estimation process. After applying a clustering method, learning dataset is generated from clusters. Using the learning dataset, artificial neural network and support vector machine are implemented. After that, decision trees for each classifier are generated. And they are used to implement simplified fuzzy logic-based classifiers by rule extraction and input selection. Finally, we can verify and compare performances. With actual occurrence cased of the anomalous propagation echo, we can determine the inner structures of the black-box classifiers.

Recent research towards integrated deterministic-probabilistic safety assessment in Korea

  • Heo, Gyunyoung;Baek, Sejin;Kwon, Dohun;Kim, Hyeonmin;Park, Jinkyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3465-3473
    • /
    • 2021
  • For a long time, research into integrated deterministic-probabilistic safety assessment has been continuously conducted to point out and overcome the limitations of classical ET (event tree)/FT (fault tree) based PSA (probabilistic safety assessment). The current paper also attempts to assert the reason why a technical transformation from classical PSA is necessary with a re-interpretation of the categories of risk. In this study, residual risk was classified into interpolating- and extrapolating-censored categories, which represent risks that are difficult to identify through an interpolation or extrapolation of representative scenarios due to potential nonlinearity between hardware and human behaviors intertwined in time and space. The authors hypothesize that such risk can be dealt with only if the classical ETs/FTs are freely relocated, entailing large-scale computation associated with physical models. The functional elements that are favorable to find residual risk were inferred from previous studies. The authors then introduce their under-development enabling techniques, namely DICE (Dynamic Integrated Consequence Evaluation) and DeBATE (Deep learning-Based Accident Trend Estimation). This work can be considered as a preliminary initiative to find the bridging points between deterministic and probabilistic assessments on the pillars of big data technology.

Descriptor-Based Profile Analysis of Kinase Inhibitors to Predict Inhibitory Activity and to Grasp Kinase Selectivity

  • Park, Hyejin;Kim, Kyeung Kyu;Kim, ChangHoon;Shin, Jae-Min;No, Kyoung Tai
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2680-2684
    • /
    • 2013
  • Protein kinases (PKs) are an important source of drug targets, especially in oncology. With 500 or more kinases in the human genome and only few kinase inhibitors approved, kinase inhibitor discovery is becoming more and more valuable. Because the discovery of kinase inhibitors with an increased selectivity is an important therapeutic concept, many researchers have been trying to address this issue with various methodologies. Although many attempts to predict the activity and selectivity of kinase inhibitors have been made, the issue of selectivity has not yet been resolved. Here, we studied kinase selectivity by generating predictive models and analyzing their descriptors by using kinase-profiling data. The 5-fold cross-validation accuracies for the 51 models were between 72.4% and 93.7% and the ROC values for all the 51 models were over 0.7. The phylogenetic tree based on the descriptor distance is quite different from that generated on the basis of sequence alignment.

A SCORM-based e-Learning Process Control Model and Its Modeling System

  • Kim, Hyun-Ah;Lee, Eun-Jung;Chun, Jun-Chul;Kim, Kwang-Hoon Pio
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.11
    • /
    • pp.2121-2142
    • /
    • 2011
  • In this paper, we propose an e-Learning process control model that aims to graphically describe and automatically generate the manifest of sequencing prerequisites in packaging SCORM's content aggregation models. In specifying the e-Learning activity sequencing, SCORM provides the concept of sequencing prerequisites to be manifested on each e-Learning activity of the corresponding tree-structured content organization model. However, the course developer is required to completely understand the SCORM's complicated sequencing prerequisites and other extensions. So, it is necessary to achieve an efficient way of packaging for the e-Learning content organization models. The e-Learning process control model proposed in this paper ought to be an impeccable solution for this problem. Consequently, this paper aims to realize a new concept of process-driven e-Learning content aggregating approach supporting the e-Learning process control model and to implement its e-Learning process modeling system graphically describing and automatically generating the SCORM's sequencing prerequisites. Eventually, the proposed model becomes a theoretical basis for implementing a SCORM-based e-Learning process management system satisfying the SCORM's sequencing prerequisite specifications. We strongly believe that the e-Learning process control model and its modeling system achieve convenient packaging in SCORM's content organization models and in implementing an e-Learning management system as well.