• Title/Summary/Keyword: tree-based models

Search Result 437, Processing Time 0.027 seconds

Multi-dimensional Contextual Conditions-driven Mutually Exclusive Learning for Explainable AI in Decision-Making

  • Hyun Jung Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.4
    • /
    • pp.7-21
    • /
    • 2024
  • There are various machine learning techniques such as Reinforcement Learning, Deep Learning, Neural Network Learning, and so on. In recent, Large Language Models (LLMs) are popularly used for Generative AI based on Reinforcement Learning. It makes decisions with the most optimal rewards through the fine tuning process in a particular situation. Unfortunately, LLMs can not provide any explanation for how they reach the goal because the training is based on learning of black-box AI. Reinforcement Learning as black-box AI is based on graph-evolving structure for deriving enhanced solution through adjustment by human feedback or reinforced data. In this research, for mutually exclusive decision-making, Mutually Exclusive Learning (MEL) is proposed to provide explanations of the chosen goals that are achieved by a decision on both ends with specified conditions. In MEL, decision-making process is based on the tree-based structure that can provide processes of pruning branches that are used as explanations of how to achieve the goals. The goal can be reached by trade-off among mutually exclusive alternatives according to the specific contextual conditions. Therefore, the tree-based structure is adopted to provide feasible solutions with the explanations based on the pruning branches. The sequence of pruning processes can be used to provide the explanations of the inferences and ways to reach the goals, as Explainable AI (XAI). The learning process is based on the pruning branches according to the multi-dimensional contextual conditions. To deep-dive the search, they are composed of time window to determine the temporal perspective, depth of phases for lookahead and decision criteria to prune branches. The goal depends on the policy of the pruning branches, which can be dynamically changed by configured situation with the specific multi-dimensional contextual conditions at a particular moment. The explanation is represented by the chosen episode among the decision alternatives according to configured situations. In this research, MEL adopts the tree-based learning model to provide explanation for the goal derived with specific conditions. Therefore, as an example of mutually exclusive problems, employment process is proposed to demonstrate the decision-making process of how to reach the goal and explanation by the pruning branches. Finally, further study is discussed to verify the effectiveness of MEL with experiments.

A study of glass and carbon fibers in FRAC utilizing machine learning approach

  • Ankita Upadhya;M. S. Thakur;Nitisha Sharma;Fadi H. Almohammed;Parveen Sihag
    • Advances in materials Research
    • /
    • v.13 no.1
    • /
    • pp.63-86
    • /
    • 2024
  • Asphalt concrete (AC), is a mixture of bitumen and aggregates, which is very sensitive in the design of flexible pavement. In this study, the Marshall stability of the glass and carbon fiber bituminous concrete was predicted by using Artificial Neural Network (ANN), Support Vector Machine (SVM), Random Forest (RF), and M5P Tree machine learning algorithms. To predict the Marshall stability, nine inputs parameters i.e., Bitumen, Glass and Carbon fibers mixed in 100:0, 75:25, 50:50, 25:75, 0:100 percentage (designated as 100GF:0CF, 75GF:25CF, 50GF:50 CF, 25GF:75CF, 0GF:100CF), Bitumen grade (VG), Fiber length (FL), and Fiber diameter (FD) were utilized from the experimental and literary data. Seven statistical indices i.e., coefficient of correlation (CC), mean absolute error (MAE), root mean squared error (RMSE), relative absolute error (RAE), root relative squared error (RRSE), Scattering index (SI), and BIAS were applied to assess the effectiveness of the developed models. According to the performance evaluation results, Artificial neural network (ANN) was outperforming among other models with CC values as 0.9147 and 0.8648, MAE values as 1.3757 and 1.978, RMSE values as 1.843 and 2.6951, RAE values as 39.88 and 49.31, RRSE values as 40.62 and 50.50, SI values as 0.1379 and 0.2027 and BIAS value as -0.1 290 and -0.2357 in training and testing stage respectively. The Taylor diagram (testing stage) also confirmed that the ANN-based model outperforms the other models. Results of sensitivity analysis showed that the fiber length is the most influential in all nine input parameters whereas the fiber combination of 25GF:75CF was the most effective among all the fiber mixes in Marshall stability.

Chlorophyll-a Forcasting using PLS Based c-Fuzzy Model Tree (PLS기반 c-퍼지 모델트리를 이용한 클로로필-a 농도 예측)

  • Lee, Dae-Jong;Park, Sang-Young;Jung, Nahm-Chung;Lee, Hye-Keun;Park, Jin-Il;Chun, Meung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.777-784
    • /
    • 2006
  • This paper proposes a c-fuzzy model tree using partial least square method to predict the Chlorophyll-a concentration in each zone. First, cluster centers are calculated by fuzzy clustering method using all input and output attributes. And then, each internal node is produced according to fuzzy membership values between centers and input attributes. Linear models are constructed by partial least square method considering input-output pairs remained in each internal node. The expansion of internal node is determined by comparing errors calculated in parent node with ones in child node, respectively. On the other hands, prediction is performed with a linear model haying the highest fuzzy membership value between input attributes and cluster centers in leaf nodes. To show the effectiveness of the proposed method, we have applied our method to water quality data set measured at several stations. Under various experiments, our proposed method shows better performance than conventional least square based model tree method.

A Prediction Triage System for Emergency Department During Hajj Period using Machine Learning Models

  • Huda N. Alhazmi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.7
    • /
    • pp.11-23
    • /
    • 2024
  • Triage is a practice of accurately prioritizing patients in emergency department (ED) based on their medical condition to provide them with proper treatment service. The variation in triage assessment among medical staff can cause mis-triage which affect the patients negatively. Developing ED triage system based on machine learning (ML) techniques can lead to accurate and efficient triage outcomes. This study aspires to develop a triage system using machine learning techniques to predict ED triage levels using patients' information. We conducted a retrospective study using Security Forces Hospital ED data, from 2021 through 2023 during Hajj period in Saudia Arabi. Using demographics, vital signs, and chief complaints as predictors, two machine learning models were investigated, naming gradient boosted decision tree (XGB) and deep neural network (DNN). The models were trained to predict ED triage levels and their predictive performance was evaluated using area under the receiver operating characteristic curve (AUC) and confusion matrix. A total of 11,584 ED visits were collected and used in this study. XGB and DNN models exhibit high abilities in the predicting performance with AUC-ROC scores 0.85 and 0.82, respectively. Compared to the traditional approach, our proposed system demonstrated better performance and can be implemented in real-world clinical settings. Utilizing ML applications can power the triage decision-making, clinical care, and resource utilization.

An Optimal Installation Strategy for Allocating Energy Storage Systems and Probabilistic-Based Distributed Generation in Active Distribution Networks

  • Sattarpour, Tohid;Tousi, Behrouz
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.6
    • /
    • pp.350-358
    • /
    • 2017
  • Recently, owing to increased interest in low-carbon energy supplies, renewable energy sources such as photovoltaics and wind turbines in distribution networks have received considerable attention for generating clean and unlimited energy. The presence of energy storage systems (ESSs) in the promising field of active distribution networks (ADNs) would have direct impact on power system problems such as encountered in probabilistic distributed generation (DG) model studies. Hence, the optimal procedure is offered herein, in which the simultaneous placement of an ESS, photovoltaic-based DG, and wind turbine-based DG in an ADN is taken into account. The main goal of this paper is to maximize the net present value of the loss reduction benefit by considering the price of electricity for each load state. The proposed framework consists of a scenario tree method for covering the existing uncertainties in the distribution network's load demand as well as DG. The collected results verify the considerable effect of concurrent installation of probabilistic DG models and an ESS in defining the optimum site of DG and the ESS and they demonstrate that the optimum operation of an ESS in the ADN is consequently related to the highest value of the loss reduction benefit in long-term planning as well. The results obtained are encouraging.

JAYA-GBRT model for predicting the shear strength of RC slender beams without stirrups

  • Tran, Viet-Linh;Kim, Jin-Kook
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.691-705
    • /
    • 2022
  • Shear failure in reinforced concrete (RC) structures is very hazardous. This failure is rarely predicted and may occur without any prior signs. Accurate shear strength prediction of the RC members is challenging, and traditional methods have difficulty solving it. This study develops a JAYA-GBRT model based on the JAYA algorithm and the gradient boosting regression tree (GBRT) to predict the shear strength of RC slender beams without stirrups. Firstly, 484 tests are carefully collected and divided into training and test sets. Then, the hyperparameters of the GBRT model are determined using the JAYA algorithm and 10-fold cross-validation. The performance of the JAYA-GBRT model is compared with five well-known empirical models. The comparative results show that the JAYA-GBRT model (R2 = 0.982, RMSE = 9.466 kN, MAE = 6.299 kN, µ = 1.018, and Cov = 0.116) outperforms the other models. Moreover, the predictions of the JAYA-GBRT model are globally and locally explained using the Shapley Additive exPlanation (SHAP) method. The effective depth is determined as the most crucial parameter influencing the shear strength through the SHAP method. Finally, a Graphic User Interface (GUI) tool and a web application (WA) are developed to apply the JAYA-GBRT model for rapidly predicting the shear strength of RC slender beams without stirrups.

Faults detection and identification for gas turbine using DNN and LLM

  • Oliaee, Seyyed Mohammad Emad;Teshnehlab, Mohammad;Shoorehdeli, Mahdi Aliyari
    • Smart Structures and Systems
    • /
    • v.23 no.4
    • /
    • pp.393-403
    • /
    • 2019
  • Applying more features gives us better accuracy in modeling; however, increasing the inputs causes the curse of dimensions. In this paper, a new structure has been proposed for fault detecting and identifying (FDI) of high-dimensional systems. This structure consist of two structure. The first part includes Auto-Encoders (AE) as Deep Neural Networks (DNNs) to produce feature engineering process and summarize the features. The second part consists of the Local Model Networks (LMNs) with LOcally LInear MOdel Tree (LOLIMOT) algorithm to model outputs (multiple models). The fault detection is based on these multiple models. Hence the residuals generated by comparing the system output and multiple models have been used to alarm the faults. To show the effectiveness of the proposed structure, it is tested on single-shaft industrial gas turbine prototype model. Finally, a brief comparison between the simulated results and several related works is presented and the well performance of the proposed structure has been illustrated.

Damage identification in suspension bridges under earthquake excitation using practical advanced analysis and hybrid machine-learning models

  • Van-Thanh Pham;Duc-Kien Thai;Seung-Eock Kim
    • Steel and Composite Structures
    • /
    • v.52 no.6
    • /
    • pp.695-711
    • /
    • 2024
  • Suspension bridges are critical to urban transportation, but those in earthquake-prone areas face unique challenges. In the event of a moderate or strong earthquake, conventional linear theory-based approaches for detecting bridge damage become inadequate. This study presents an efficient method for identifying damage in suspension bridges using time history nonlinear inelastic analysis. A practical advanced analysis program is employed to model cable-supported bridges with low computational cost, generating a dataset for four hybrid models: PSO-DT, PSO-RF, PSO-XGB, and PSO-CGB. These models combine decision tree (DT), random forest (RF), extreme gradient boosting (XGB), and categorical gradient boosting (CGB) with particle swarm optimization (PSO) to capture nonlinear correlations between displacement response and damage. Principal component analysis reduces dataset dimensions, and PSO selects the optimal model. A numerical case study of a suspension bridge under simulated earthquake conditions identifies PSO-XGB as the best model for predicting stiffness reduction. The results demonstrate the method's robustness for nonlinear damage detection in suspension bridges under earthquake excitation.

Sensitivity Analysis on Ecological Factors Affecting Forest Fire Spreading: Simulation Study (산불확산에 영향을 미치는 생태학적 요소들간의 민감도 분석: 시뮬레이션 연구)

  • Song, Hark-Soo;Lee, Sang-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.3
    • /
    • pp.178-185
    • /
    • 2013
  • Forest fires are expected to increase in severity and frequency under global climate change and thus better understanding of fire dynamics is critical for mitigation and adaptation. Researchers with different background, such as ecologists, physicists, and mathematical biologists, have developed various simulation models to reproduce forest fire spread dynamics. However, these models have limitations in the fire spreading because of the complicated factors such as fuel types, wind, and moisture. In this study, we suggested a simple model considering the wind effect and two different fuel types. The two fuels correspond to susceptible tree and resistant tree with different probabilities of transferring fire. The trees were randomly distributed in simulation space with a density ranging from 0.0 (low) to 1.0 (high). The susceptible tree had higher value of the probability than the resistant tree. Based on the number of burnt trees, we then carried out the sensitivity analysis to quantify how the forest fire patterns are affected by wind and tree density. The statistical analysis showed that the total tree density had greatest effect on the forest fire spreading and wind had the next greatest effect. The density of the susceptible tree was relatively lower factor affecting the forest fire. We believe that our model can be a useful tool to explore forest fire spreading patterns.

Optimizing shallow foundation design: A machine learning approach for bearing capacity estimation over cavities

  • Kumar Shubham;Subhadeep Metya;Abdhesh Kumar Sinha
    • Geomechanics and Engineering
    • /
    • v.37 no.6
    • /
    • pp.629-641
    • /
    • 2024
  • The presence of excavations or cavities beneath the foundations of a building can have a significant impact on their stability and cause extensive damage. Traditional methods for calculating the bearing capacity and subsidence of foundations over cavities can be complex and time-consuming, particularly when dealing with conditions that vary. In such situations, machine learning (ML) and deep learning (DL) techniques provide effective alternatives. This study concentrates on constructing a prediction model based on the performance of ML and DL algorithms that can be applied in real-world settings. The efficacy of eight algorithms, including Regression Analysis, k-Nearest Neighbor, Decision Tree, Random Forest, Multivariate Regression Spline, Artificial Neural Network, and Deep Neural Network, was evaluated. Using a Python-assisted automation technique integrated with the PLAXIS 2D platform, a dataset containing 272 cases with eight input parameters and one target variable was generated. In general, the DL model performed better than the ML models, and all models, except the regression models, attained outstanding results with an R2 greater than 0.90. These models can also be used as surrogate models in reliability analysis to evaluate failure risks and probabilities.