• Title/Summary/Keyword: tree-based models

Search Result 437, Processing Time 0.026 seconds

Ensemble Gene Selection Method Based on Multiple Tree Models

  • Mingzhu Lou
    • Journal of Information Processing Systems
    • /
    • v.19 no.5
    • /
    • pp.652-662
    • /
    • 2023
  • Identifying highly discriminating genes is a critical step in tumor recognition tasks based on microarray gene expression profile data and machine learning. Gene selection based on tree models has been the subject of several studies. However, these methods are based on a single-tree model, often not robust to ultra-highdimensional microarray datasets, resulting in the loss of useful information and unsatisfactory classification accuracy. Motivated by the limitations of single-tree-based gene selection, in this study, ensemble gene selection methods based on multiple-tree models were studied to improve the classification performance of tumor identification. Specifically, we selected the three most representative tree models: ID3, random forest, and gradient boosting decision tree. Each tree model selects top-n genes from the microarray dataset based on its intrinsic mechanism. Subsequently, three ensemble gene selection methods were investigated, namely multipletree model intersection, multiple-tree module union, and multiple-tree module cross-union, were investigated. Experimental results on five benchmark public microarray gene expression datasets proved that the multiple tree module union is significantly superior to gene selection based on a single tree model and other competitive gene selection methods in classification accuracy.

Single Image-Based 3D Tree and Growth Models Reconstruction

  • Kim, Jaehwan;Jeong, Il-Kwon
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.450-459
    • /
    • 2014
  • In this paper, we present a new, easy-to-generate system that is capable of creating virtual 3D tree models and simulating a variety of growth processes of a tree from a single, real tree image. We not only construct various tree models with the same trunk through our proposed digital image matting method and skeleton-based abstraction of branches, but we also animate the visual growth of the constructed 3D tree model through usage of the branch age information combined with a scaling factor. To control the simulation of a tree growth process, we consider tree-growing attributes, such as branching orders, branch width, tree size, and branch self-bending effect, at the same time. Other invisible branches and leaves are automatically attached to the tree by employing parametric branch libraries under the conventional procedural assumption of structure having a local self-similarity. Simulations with a real image confirm that our system makes it possible to achieve realistic tree models and growth processes with ease.

Comparison of Performance Measures for Credit-Card Delinquents Classification Models : Measured by Hit Ratio vs. by Utility (신용카드 연체자 분류모형의 성능평가 척도 비교 : 예측률과 유틸리티 중심으로)

  • Chung, Suk-Hoon;Suh, Yong-Moo
    • Journal of Information Technology Applications and Management
    • /
    • v.15 no.4
    • /
    • pp.21-36
    • /
    • 2008
  • As the great disturbance from abusing credit cards in Korea becomes stabilized, credit card companies need to interpret credit-card delinquents classification models from the viewpoint of profit. However, hit ratio which has been used as a measure of goodness of classification models just tells us how much correctly they classified rather than how much profits can be obtained as a result of using classification models. In this research, we tried to develop a new utility-based measure from the viewpoint of profit and then used this new measure to analyze two classification models(Neural Networks and Decision Tree models). We found that the hit ratio of neural model is higher than that of decision tree model, but the utility value of decision tree model is higher than that of neural model. This experiment shows the importance of utility based measure for credit-card delinquents classification models. We expect this new measure will contribute to increasing profits of credit card companies.

  • PDF

Unseen Model Prediction using an Optimal Decision Tree (Optimal Decision Tree를 이용한 Unseen Model 추정방법)

  • Kim Sungtak;Kim Hoi-Rin
    • MALSORI
    • /
    • no.45
    • /
    • pp.117-126
    • /
    • 2003
  • Decision tree-based state tying has been proposed in recent years as the most popular approach for clustering the states of context-dependent hidden Markov model-based speech recognition. The aims of state tying is to reduce the number of free parameters and predict state probability distributions of unseen models. But, when doing state tying, the size of a decision tree is very important for word independent recognition. In this paper, we try to construct optimized decision tree based on the average of feature vectors in state pool and the number of seen modes. We observed that the proposed optimal decision tree is effective in predicting the state probability distribution of unseen models.

  • PDF

Axial capacity of FRP reinforced concrete columns: Empirical, neural and tree based methods

  • Saha Dauji
    • Structural Engineering and Mechanics
    • /
    • v.89 no.3
    • /
    • pp.283-300
    • /
    • 2024
  • Machine learning (ML) models based on artificial neural network (ANN) and decision tree (DT) were developed for estimation of axial capacity of concrete columns reinforced with fiber reinforced polymer (FRP) bars. Between the design codes, the Canadian code provides better formulation compared to the Australian or American code. For empirical models based on elastic modulus of FRP, Hadhood et al. (2017) model performed best. Whereas for empirical models based on tensile strength of FRP, as well as all empirical models, Raza et al. (2021) was adjudged superior. However, compared to the empirical models, all ML models exhibited superior performance according to all five performance metrics considered. The performance of ANN and DT models were comparable in general. Under the present setup, inclusion of the transverse reinforcement information did not improve the accuracy of estimation with either ANN or DT. With selective use of inputs, and a much simpler ANN architecture (4-3-1) compared to that reported in literature (Raza et al. 2020: 6-11-11-1), marginal improvement in correlation could be achieved. The metrics for the best model from the study was a correlation of 0.94, absolute errors between 420 kN to 530 kN, and the range being 0.39 to 0.51 for relative errors. Though much superior performance could be obtained using ANN/DT models over empirical models, further work towards improving accuracy of the estimation is indicated before design of FRP reinforced concrete columns using ML may be considered for design codes.

Accuracy Measurement of Image Processing-Based Artificial Intelligence Models

  • Jong-Hyun Lee;Sang-Hyun Lee
    • International journal of advanced smart convergence
    • /
    • v.13 no.1
    • /
    • pp.212-220
    • /
    • 2024
  • When a typhoon or natural disaster occurs, a significant number of orchard fruits fall. This has a great impact on the income of farmers. In this paper, we introduce an AI-based method to enhance low-quality raw images. Specifically, we focus on apple images, which are being used as AI training data. In this paper, we utilize both a basic program and an artificial intelligence model to conduct a general image process that determines the number of apples in an apple tree image. Our objective is to evaluate high and low performance based on the close proximity of the result to the actual number. The artificial intelligence models utilized in this study include the Convolutional Neural Network (CNN), VGG16, and RandomForest models, as well as a model utilizing traditional image processing techniques. The study found that 49 red apple fruits out of a total of 87 were identified in the apple tree image, resulting in a 62% hit rate after the general image process. The VGG16 model identified 61, corresponding to 88%, while the RandomForest model identified 32, corresponding to 83%. The CNN model identified 54, resulting in a 95% confirmation rate. Therefore, we aim to select an artificial intelligence model with outstanding performance and use a real-time object separation method employing artificial function and image processing techniques to identify orchard fruits. This application can notably enhance the income and convenience of orchard farmers.

Individual Tree Growth Models for Natural Mixed Forests in Changbai Mountains, Northeast China

  • Lu, Jun;Li, Fengri
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.2
    • /
    • pp.160-169
    • /
    • 2007
  • The data used to develop distance-independent individual models for natural mixed forests were collected from 712 remeasured permanent sample plots (25,526 trees) of 10-year periodic from 1990 to 2000 in Baihe Forest Bureau of Changbai Mountains, northeast China. Based on analyzing relationship between diameter increment of individual trees with tree size, competitive status, and site condition, the diameter growth models for individual trees of 15 species growing in mixed-species uneven-aged forest stands, that have simple form, good predicting precision, and easily applicable, were developed using stepwise regression method. The main variables influencing on diameter increment of individual trees were tree size and competition, however, the site conditions were not significantly related with diameter increment. The tree size variables (lnDBH and $DBH^2$) were the most significant and important predictors of diameter growth existing in all 15 growth models. The diameter increment was directly proportional to tree diameter for each species. For the competitive factors in growth model, the relative diameter (RD), canopy closure (P), and the ratio of diameter of subject tree with maximum diameter (DDM) were contributed to the diameter increment at a certain extent. Other measures of stand density, such as basal area of stand (G) and stand density index (SDI), were not significantly influenced on diameter increment. Site factors, such as site index, slope and aspect were not important to diameter increment and excluded in the final models. The total variance explained by the final models of squared diameter increment ($R^2$) for all 15 species ranged from 35% to 72% and these results compared quit closely with those of Wykoff (1990) for mixed conifer stands. Using independent data set, validation measures were evaluated for predicting models of diameter increment developed in this study. The result indicated that the estimated precision was all greater than 94% and the models were suitable to describe diameter increment.

Assessment of compressive strength of high-performance concrete using soft computing approaches

  • Chukwuemeka Daniel;Jitendra Khatti;Kamaldeep Singh Grover
    • Computers and Concrete
    • /
    • v.33 no.1
    • /
    • pp.55-75
    • /
    • 2024
  • The present study introduces an optimum performance soft computing model for predicting the compressive strength of high-performance concrete (HPC) by comparing models based on conventional (kernel-based, covariance function-based, and tree-based), advanced machine (least square support vector machine-LSSVM and minimax probability machine regressor-MPMR), and deep (artificial neural network-ANN) learning approaches using a common database for the first time. A compressive strength database, having results of 1030 concrete samples, has been compiled from the literature and preprocessed. For the purpose of training, testing, and validation of soft computing models, 803, 101, and 101 data points have been selected arbitrarily from preprocessed data points, i.e., 1005. Thirteen performance metrics, including three new metrics, i.e., a20-index, index of agreement, and index of scatter, have been implemented for each model. The performance comparison reveals that the SVM (kernel-based), ET (tree-based), MPMR (advanced), and ANN (deep) models have achieved higher performance in predicting the compressive strength of HPC. From the overall analysis of performance, accuracy, Taylor plot, accuracy metric, regression error characteristics curve, Anderson-Darling, Wilcoxon, Uncertainty, and reliability, it has been observed that model CS4 based on the ensemble tree has been recognized as an optimum performance model with higher performance, i.e., a correlation coefficient of 0.9352, root mean square error of 5.76 MPa, and mean absolute error of 4.1069 MPa. The present study also reveals that multicollinearity affects the prediction accuracy of Gaussian process regression, decision tree, multilinear regression, and adaptive boosting regressor models, novel research in compressive strength prediction of HPC. The cosine sensitivity analysis reveals that the prediction of compressive strength of HPC is highly affected by cement content, fine aggregate, coarse aggregate, and water content.

Forecasting Sow's Productivity using the Machine Learning Models (머신러닝을 활용한 모돈의 생산성 예측모델)

  • Lee, Min-Soo;Choe, Young-Chan
    • Journal of Agricultural Extension & Community Development
    • /
    • v.16 no.4
    • /
    • pp.939-965
    • /
    • 2009
  • The Machine Learning has been identified as a promising approach to knowledge-based system development. This study aims to examine the ability of machine learning techniques for farmer's decision making and to develop the reference model for using pig farm data. We compared five machine learning techniques: logistic regression, decision tree, artificial neural network, k-nearest neighbor, and ensemble. All models are well performed to predict the sow's productivity in all parity, showing over 87.6% predictability. The model predictability of total litter size are highest at 91.3% in third parity and decreasing as parity increases. The ensemble is well performed to predict the sow's productivity. The neural network and logistic regression is excellent classifier for all parity. The decision tree and the k-nearest neighbor was not good classifier for all parity. Performance of models varies over models used, showing up to 104% difference in lift values. Artificial Neural network and ensemble models have resulted in highest lift values implying best performance among models.

  • PDF

Fault Tree Analysis based on State-Transition Model (상태 전이 모델 기반 결함 트리 분석)

  • Chung, In-Sang
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.10
    • /
    • pp.49-58
    • /
    • 2011
  • Fault Tree Analysis(FTA) builds fault trees to perform safety analysis of systems. However, building fault trees depends on domain knowledge and expertize on target systems and consumes lots of time and efforts. In this paper, we propose a technique that builds fault trees systematically based on state-transition models which are software design artifacts. For the end, this paper identifies conditions that should be satisfied to guarantee safety of state-transition models and develop templates for fault tree construction. This paper also describes the results of appling the proposed method to railway crossing control system.