• Title/Summary/Keyword: tree fern

Search Result 6, Processing Time 0.018 seconds

Reconsideration of the Natural Monument Geummubong Petrified Tree Fern Fossil Site, Ghilgok, Korea (천연기념물 칠곡 금무봉 나무고사리 화석산지에 대한 고찰)

  • Seung-Ho Jung;Dal-Yong Kong
    • Economic and Environmental Geology
    • /
    • v.57 no.1
    • /
    • pp.93-105
    • /
    • 2024
  • Chilgok Geummubong tree fern fossil site is the type locality where tree fern stem fossils (Cyathocaulis naktongensis) were first discovered by Tateiwa in 1925. Recognized for its academic value, it was designated as a natural monument in the 1930s during the Japanese colonial period, and preserved and managed for over 90 years. However, at the time of discovery, the stratigraphic level of tree fern fossils could not be located because the fossils were fragments detached from the rock body, and thus the Geummubong area where the conglomerate/sandstone layers of the Nakdong Formation are distributed, has been designated as a cultural heritage area. Only in the 2000s, when tree fern fossils were directly recovered from the outcrops near the designated area, the sedimentary rock facies containing the fossils were interpreted, and the anatomical characteristics of the Mesozoic tree fern fossils could be described and identified as a species level. Such studies are, in these days, redefining classification criteria done by Japanese paleontologist, Ogura. That is, Korean researchers pointed out that the classification criteria of the tree fern fossils (Cyathocaulis) reported early from Chilgok were ambiguous, and the possibility that the two species were the same species was suggested. In addition, it is necessary to reorganize designated areas as a way to resolve social conflicts and civil complaints caused by various regulations that have continued for a long time.

Habitat Characteristics and Vegetation Structure of the Evergreen Fern in Jejudo, Korea (제주도의 상록양치식물 자생지 환경특성 및 식생구조에 관한 연구)

  • Bang, Kwang Ja;Kim, Kwang-Du;Kang, Hyun-Kyung;Ju, Jin Hee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.3
    • /
    • pp.64-72
    • /
    • 2004
  • The research was carried out to define the environmental characteristics and vegetation structure of the evergreen fern habitat in Jejudo. The growth conditions of evergreen fern in various habitats was surveyed, including topographical features, vegetation structure, air temperature, humidity, intensity of light, water content and organic matter content in the soil. In the direction of the native habitat, 70% of research area was located in the southeast-facing slopes, 30% was located in southern slopes. The gradient ranged from $0^{\circ}$ to $30^{\circ}$. Temperature ranged from $16^{\circ}C$ to $28^{\circ}C$, and $22.3^{\circ}C$ was the average. Humidity ranged from 20 to 68%, and 36% was the average. In the native habitat, the highest light intensities reached 60,000 to 80,0001ux, but in general ranged from 300 to 40001ux. Water content in the soil ranged from 32% to 59%, organic matter content ranged from 8 to 13%. Within a unit of 25$m^2$, there were tall-tree layer such as Quercus galuca and Castanopsis cuspidata with a covering of rate 40~80%, a sub-tall-tree layer such as Camellia japonica, Staphylea bumalda and Sambucus williamsii with the covering rate of 3~5%, a shrub layer with the covering rate of 5~20%, and a grass layer with the covering rate of 40~95%. This research provides the basic data about the native habitat environment of the evergreen fern plant. Continuous monitoring and accumulation of data is necessary for the use of evergreen fern as vegetation materials.

Population Structure and Regeneration Status of Cyathea gigantea (Wallich ex Hook. f.) Holttum, a Tree Fern in Arunachal Pradesh, India

  • Paul, Ashish;Bhattacharjee, Sonal;Choudhury, Baharul Islam;Khan, Mohamed Latif
    • Journal of Forest and Environmental Science
    • /
    • v.31 no.3
    • /
    • pp.164-176
    • /
    • 2015
  • Cyathea gigantea is a tree fern distributed throughout humid tropical regions of northeast India and other parts of the country. However, wild populations of this species are largely affected by various natural and anthropogenic activities. Therefore, an attempt was made to study the population structure and regeneration status of C. gigantea in and around greater Itanagar area of Papum Pare district, Arunachal Pradesh. Altogether 45 patches, ranging from 19.63 to $260m^2$ of area, were randomly sampled to study population structure and regeneration status of the species. Population study showed highest number of youngs in the height class of 0.50-0.75 m while, immatures were recorded highest in the height class of 2.0 to 2.5 m. Majority of the matures belonged to 6-9 m height class while it was recorded maximum in the diameter class of 10-15 cm. Average density of C. gigantea was $0.07individuals\;ha^{-1}$ which varied greatly among different patches with a range of 2 to 14. Significant correlations were found between patch size and density of youngs, immatures, matures and total density. Maximum concentration of youngs was observed in patch size $60-140m^2$, while for immatures, it was highest in patch size $20-160m^2$. Similarly, highest concentration of matures was observed in patch size $20-80m^2$ and $80-180m^2$. Population structure of the total population exhibited inverted pyramid shaped distribution. Population structure consisting of youngs, immatures, matures showed that around 60% patches lack of regenerating individuals which depict very poor natural regeneration of the species. Effective conservation strategies are therefore to be formulated to save C. gigantea from the threat of extinction in near future.

Screening of Biological Activities in Fern Plants Native to Jeju Island (제주도에 자생하는 양치식물의 생리활성 검색)

  • Oh, Soon-Ja;Hong, Sung-Soo;Kim, Yeon-Hee;Koh, Seok-Chan
    • Korean Journal of Plant Resources
    • /
    • v.21 no.1
    • /
    • pp.12-18
    • /
    • 2008
  • Antioxidative activity and inhibitory activity of angiotensin I converting enzyme(ACE), aminopeptidase N(APN) and $\alpha$-amylase were investigated in the methanol extracts from 25 fern plants native to Jeju Island, in order to screen the plant species containing bioactive materials for functional foods or medicines. The antioxidative activity was higher in Cytomium fortunei(41.9%) and Rumohra standishii(34.1%) than in leaves of Thea sinensis(30.9%), a small tree for antioxidative beverage. Inhibitory activities of ACE and APN were relatively high in Cytomium fortunei as 26.7% and 28.2% respectively. $\alpha$-Amylase inhibitory activity was higher than 50% in 10 species. Particularly, Cytomium fortunei(87.4%) and Dryopteris erythrosora(71.6%) showed the inhibitory activities higher than those of other form plants. Of 25 fern plants investigated here, Cytomium fortunei showed not only the highest antioxidative activity but also the highest inhibitory activity of ACE, APN and $\alpha$-amylase. It suggests that Cytomium fortunei could be potentially used as a resource of bioactive materials for fuctional foods or medicines.

First report of Cucumber mosaic virus in African Impatiens (Impatiens walleriana) in Korea

  • Choi, Seung Kook;Choi, Gug-Seoun;Kwon, Sun-Jung;Cho, In-Sook;Yoon, Ju-Yeon
    • Research in Plant Disease
    • /
    • v.21 no.4
    • /
    • pp.341-345
    • /
    • 2015
  • Virus-like symptoms including stunt, severe mosaic with malformation of leaves, fern-like leaves and abnormal petals were observed from an African impatiens (Impatiens walleriana) grown in a plant nursery in Icheon, Korea. Serological analysis using immuno-strip kits for viruses reported in African impatiens indicated that Cucumber mosaic virus (named CMV-Im) was a causal agent for the symptomatic African impatiens. Biological properties of CMV-Im were analyzed using responses of host plant species, suggesting that CMV-Im is a typical strain that belongs to CMV subgroup I. RT-PCR analysis verified CMV-Im infection from naturally infected African impatiens or mechanically inoculated some host species. Analysis of multiple alignments of CMV capsid protein (CP) sequences showed that CMV-Im shared high CP amino acids identities with other CMV strains. Phylogenetic tree analysis for the CP sequences of CMV-Im and representative CMV strains confirmed that CMV is a typical member of CMV subgroup I. To our knowledge, it is the first report of CMV in African impatiens in Korea.

Chloroplast Genome Evolution in Early Diverged Leptosporangiate Ferns

  • Kim, Hyoung Tae;Chung, Myong Gi;Kim, Ki-Joong
    • Molecules and Cells
    • /
    • v.37 no.5
    • /
    • pp.372-382
    • /
    • 2014
  • In this study, the chloroplast (cp) genome sequences from three early diverged leptosporangiate ferns were completed and analyzed in order to understand the evolution of the genome of the fern lineages. The complete cp genome sequence of Osmunda cinnamomea (Osmundales) was 142,812 base pairs (bp). The cp genome structure was similar to that of eusporangiate ferns. The gene/intron losses that frequently occurred in the cp genome of leptosporangiate ferns were not found in the cp genome of O. cinnamomea. In addition, putative RNA editing sites in the cp genome were rare in O. cinnamomea, even though the sites were frequently predicted to be present in leptosporangiate ferns. The complete cp genome sequence of Diplopterygium glaucum (Gleicheniales) was 151,007 bp and has a 9.7 kb inversion between the trnL-CAA and trnV-GCA genes when compared to O. cinnamomea. Several repeated sequences were detected around the inversion break points. The complete cp genome sequence of Lygodium japonicum (Schizaeales) was 157,142 bp and a deletion of the rpoC1 intron was detected. This intron loss was shared by all of the studied species of the genus Lygodium. The GC contents and the effective numbers of codons (ENCs) in ferns varied significantly when compared to seed plants. The ENC values of the early diverged leptosporangiate ferns showed intermediate levels between eusporangiate and core leptosporangiate ferns. However, our phylogenetic tree based on all of the cp gene sequences clearly indicated that the cp genome similarity between O. cinnamomea (Osmundales) and eusporangiate ferns are symplesiomorphies, rather than synapomorphies. Therefore, our data is in agreement with the view that Osmundales is a distinct early diverged lineage in the leptosporangiate ferns.