• Title/Summary/Keyword: tree classification method

Search Result 360, Processing Time 0.029 seconds

A new classification method using penalized partial least squares (벌점 부분최소자승법을 이용한 분류방법)

  • Kim, Yun-Dae;Jun, Chi-Hyuck;Lee, Hye-Seon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.5
    • /
    • pp.931-940
    • /
    • 2011
  • Classification is to generate a rule of classifying objects into several categories based on the learning sample. Good classification model should classify new objects with low misclassification error. Many types of classification methods have been developed including logistic regression, discriminant analysis and tree. This paper presents a new classification method using penalized partial least squares. Penalized partial least squares can make the model more robust and remedy multicollinearity problem. This paper compares the proposed method with logistic regression and PCA based discriminant analysis by some real and artificial data. It is concluded that the new method has better power as compared with other methods.

Self Introduction Essay Classification Using Doc2Vec for Efficient Job Matching (Doc2Vec 모형에 기반한 자기소개서 분류 모형 구축 및 실험)

  • Kim, Young Soo;Moon, Hyun Sil;Kim, Jae Kyeong
    • Journal of Information Technology Services
    • /
    • v.19 no.1
    • /
    • pp.103-112
    • /
    • 2020
  • Job seekers are making various efforts to find a good company and companies attempt to recruit good people. Job search activities through self-introduction essay are nowadays one of the most active processes. Companies spend time and cost to reviewing all of the numerous self-introduction essays of job seekers. Job seekers are also worried about the possibility of acceptance of their self-introduction essays by companies. This research builds a classification model and conducted an experiments to classify self-introduction essays into pass or fail using deep learning and decision tree techniques. Real world data were classified using stratified sampling to alleviate the data imbalance problem between passed self-introduction essays and failed essays. Documents were embedded using Doc2Vec method developed from existing Word2Vec, and they were classified using logistic regression analysis. The decision tree model was chosen as a benchmark model, and K-fold cross-validation was conducted for the performance evaluation. As a result of several experiments, the area under curve (AUC) value of PV-DM results better than that of other models of Doc2Vec, i.e., PV-DBOW and Concatenate. Furthmore PV-DM classifies passed essays as well as failed essays, while PV_DBOW can not classify passed essays even though it classifies well failed essays. In addition, the classification performance of the logistic regression model embedded using the PV-DM model is better than the decision tree-based classification model. The implication of the experimental results is that company can reduce the cost of recruiting good d job seekers. In addition, our suggested model can help job candidates for pre-evaluating their self-introduction essays.

Evaluation of Machine Learning Algorithm Utilization for Lung Cancer Classification Based on Gene Expression Levels

  • Podolsky, Maxim D;Barchuk, Anton A;Kuznetcov, Vladimir I;Gusarova, Natalia F;Gaidukov, Vadim S;Tarakanov, Segrey A
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.2
    • /
    • pp.835-838
    • /
    • 2016
  • Background: Lung cancer remains one of the most common cancers in the world, both in terms of new cases (about 13% of total per year) and deaths (nearly one cancer death in five), because of the high case fatality. Errors in lung cancer type or malignant growth determination lead to degraded treatment efficacy, because anticancer strategy depends on tumor morphology. Materials and Methods: We have made an attempt to evaluate effectiveness of machine learning algorithms in the task of lung cancer classification based on gene expression levels. We processed four publicly available data sets. The Dana-Farber Cancer Institute data set contains 203 samples and the task was to classify four cancer types and sound tissue samples. With the University of Michigan data set of 96 samples, the task was to execute a binary classification of adenocarcinoma and non-neoplastic tissues. The University of Toronto data set contains 39 samples and the task was to detect recurrence, while with the Brigham and Women's Hospital data set of 181 samples it was to make a binary classification of malignant pleural mesothelioma and adenocarcinoma. We used the k-nearest neighbor algorithm (k=1, k=5, k=10), naive Bayes classifier with assumption of both a normal distribution of attributes and a distribution through histograms, support vector machine and C4.5 decision tree. Effectiveness of machine learning algorithms was evaluated with the Matthews correlation coefficient. Results: The support vector machine method showed best results among data sets from the Dana-Farber Cancer Institute and Brigham and Women's Hospital. All algorithms with the exception of the C4.5 decision tree showed maximum potential effectiveness in the University of Michigan data set. However, the C4.5 decision tree showed best results for the University of Toronto data set. Conclusions: Machine learning algorithms can be used for lung cancer morphology classification and similar tasks based on gene expression level evaluation.

The Construction Methodology of a Rule-based Expert System using CART-based Decision Tree Method (CART 알고리즘 기반의 의사결정트리 기법을 이용한 규칙기반 전문가 시스템 구축 방법론)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.849-854
    • /
    • 2011
  • To minimize the spreading effect from the events of the system, a rule-based expert system is very effective. However, because the events of the large-scale system are diverse and the load condition is very variable, it is very difficult to construct the rule-based expert system. To solve this problem, this paper studies a methodology which constructs a rule-based expert system by applying a CART(Classification and Regression Trees) algorithm based decision tree determination method to event case examples.

Effective Korean sentiment classification method using word2vec and ensemble classifier (Word2vec과 앙상블 분류기를 사용한 효율적 한국어 감성 분류 방안)

  • Park, Sung Soo;Lee, Kun Chang
    • Journal of Digital Contents Society
    • /
    • v.19 no.1
    • /
    • pp.133-140
    • /
    • 2018
  • Accurate sentiment classification is an important research topic in sentiment analysis. This study suggests an efficient classification method of Korean sentiment using word2vec and ensemble methods which have been recently studied variously. For the 200,000 Korean movie review texts, we generate a POS-based BOW feature and a feature using word2vec, and integrated features of two feature representation. We used a single classifier of Logistic Regression, Decision Tree, Naive Bayes, and Support Vector Machine and an ensemble classifier of Adaptive Boost, Bagging, Gradient Boosting, and Random Forest for sentiment classification. As a result of this study, the integrated feature representation composed of BOW feature including adjective and adverb and word2vec feature showed the highest sentiment classification accuracy. Empirical results show that SVM, a single classifier, has the highest performance but ensemble classifiers show similar or slightly lower performance than the single classifier.

Anomaly detection and attack type classification mechanism using Extra Tree and ANN (Extra Tree와 ANN을 활용한 이상 탐지 및 공격 유형 분류 메커니즘)

  • Kim, Min-Gyu;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.79-85
    • /
    • 2022
  • Anomaly detection is a method to detect and block abnormal data flows in general users' data sets. The previously known method is a method of detecting and defending an attack based on a signature using the signature of an already known attack. This has the advantage of a low false positive rate, but the problem is that it is very vulnerable to a zero-day vulnerability attack or a modified attack. However, in the case of anomaly detection, there is a disadvantage that the false positive rate is high, but it has the advantage of being able to identify, detect, and block zero-day vulnerability attacks or modified attacks, so related studies are being actively conducted. In this study, we want to deal with these anomaly detection mechanisms, and we propose a new mechanism that performs both anomaly detection and classification while supplementing the high false positive rate mentioned above. In this study, the experiment was conducted with five configurations considering the characteristics of various algorithms. As a result, the model showing the best accuracy was proposed as the result of this study. After detecting an attack by applying the Extra Tree and Three-layer ANN at the same time, the attack type is classified using the Extra Tree for the classified attack data. In this study, verification was performed on the NSL-KDD data set, and the accuracy was 99.8%, 99.1%, 98.9%, 98.7%, and 97.9% for Normal, Dos, Probe, U2R, and R2L, respectively. This configuration showed superior performance compared to other models.

Collaborative Filtering and Genre Classification for Music Recommendation

  • Byun, Jeong-Yong;Nasridinov, Aziz
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.693-694
    • /
    • 2014
  • This short paper briefly describes the proposed music recommendation method that provides suitable music pieces to a listener depending on both listeners' ratings and content of music pieces. The proposed method consists of two methods. First, listeners' ratings prediction method is a combination the traditional user-based and item-based collaborative filtering methods. Second, genre classification method is a combination of feature extraction and classification procedures. The feature extraction step obtains audio signal information and stores it in data structure, while the second one classifies the music pieces into various genres using decision tree algorithm.

Multi-Label Classification Approach to Location Prediction

  • Lee, Min Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.10
    • /
    • pp.121-128
    • /
    • 2017
  • In this paper, we propose a multi-label classification method in which multi-label classification estimation techniques are applied to resolving location prediction problem. Most of previous studies related to location prediction have focused on the use of single-label classification by using contextual information such as user's movement paths, demographic information, etc. However, in this paper, we focused on the case where users are free to visit multiple locations, forcing decision-makers to use multi-labeled dataset. By using 2373 contextual dataset which was compiled from college students, we have obtained the best results with classifiers such as bagging, random subspace, and decision tree with the multi-label classification estimation methods like binary relevance(BR), binary pairwise classification (PW).

Comparison of machine learning algorithms for regression and classification of ultimate load-carrying capacity of steel frames

  • Kim, Seung-Eock;Vu, Quang-Viet;Papazafeiropoulos, George;Kong, Zhengyi;Truong, Viet-Hung
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.193-209
    • /
    • 2020
  • In this paper, the efficiency of five Machine Learning (ML) methods consisting of Deep Learning (DL), Support Vector Machine (SVM), Random Forest (RF), Decision Tree (DT), and Gradient Tree Booting (GTB) for regression and classification of the Ultimate Load Factor (ULF) of nonlinear inelastic steel frames is compared. For this purpose, a two-story, a six-story, and a twenty-story space frame are considered. An advanced nonlinear inelastic analysis is carried out for the steel frames to generate datasets for the training of the considered ML methods. In each dataset, the input variables are the geometric features of W-sections and the output variable is the ULF of the frame. The comparison between the five ML methods is made in terms of the mean-squared-error (MSE) for the regression models and the accuracy for the classification models, respectively. Moreover, the ULF distribution curve is calculated for each frame and the strength failure probability is estimated. It is found that the GTB method has the best efficiency in both regression and classification of ULF regardless of the number of training samples and the space frames considered.

Local Feature Based Facial Expression Recognition Using Adaptive Decision Tree (적응형 결정 트리를 이용한 국소 특징 기반 표정 인식)

  • Oh, Jihun;Ban, Yuseok;Lee, Injae;Ahn, Chunghyun;Lee, Sangyoun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.2
    • /
    • pp.92-99
    • /
    • 2014
  • This paper proposes the method of facial expression recognition based on decision tree structure. In the image of facial expression, ASM(Active Shape Model) and LBP(Local Binary Pattern) make the local features of a facial expressions extracted. The discriminant features gotten from local features make the two facial expressions of all combination classified. Through the sum of true related to classification, the combination of facial expression and local region are decided. The integration of branch classifications generates decision tree. The facial expression recognition based on decision tree shows better recognition performance than the method which doesn't use that.