• Title/Summary/Keyword: treatment wetland

Search Result 220, Processing Time 0.026 seconds

Problems and improvement methods of passive treatment systems for acid mine drainage in Korea

  • Ji, Sang-Woo;Ko, Ju-In;Kim, Sun-Joon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.504-510
    • /
    • 2003
  • This study has been carried out to evaluate the passive treatment systems for acid mine drainage in Korea and to suggest, if possible, the method for the improvement. 35 passive treatment systems in 27 mines have been constructed since 1996. SAPS, being the main process, was combined with more than one of processes such as anaerobic wetland, aerobic wetland, and oxidation pond for the construction of passive treatment system. Problems observed during the operation include the poor sulfate removal ratio, overflow, leakage, unusabless of the whole system, and inefficiency. The reasons of the poor sulfate removal ratio are believed that the low temperature during the winter prohibits the SRB activity and HRT for bacterial sulfate reduction is insufficient. An alternative method In Adit Sulfate Reducing System which enables to keep the temperature constant at about $15^{\circ}C$ was suggested. IASRS is the methods of placing the SAPS inside the adit, which enables the temperature around the system constant can be maintained. The experiments using the laboratory scaled model systems made up of four sections showed high efficiencies in pH control and metal removal ratios, but showed still low sulfate removal ratio of about $23\%$ also with high COD at the beginning of the operation.

  • PDF

Dynamics of Phytoplankton Community in the Open Water Flowed Through the Shihwa Constructed Wetland from Streams (Banwoul, Donghwa and Samhwa stream) (하천수 (반월천, 동화천, 삼화천)의 시화인공습지 관류에 따른 개방수에서 식물플랑크톤 군집 동태)

  • Kim, Yong-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.3 s.113
    • /
    • pp.403-411
    • /
    • 2005
  • The Shihwa constructed wetland was established for the treatment of severely polluted water from Banwoul, Donghwa and Samhwa streams, This study was focused on investigating dynamics of phytoplankton community at 5 stations of open waters in the Shihwa constructed wetland from October 2001 to July 2002. The concentration of T-N and T-P of inlet stations from the streams were decreased by flowed through the wetland. However, the TN/TP ratios at all stations were shown as a little over 16 indicating that the T-P plays an important role as a limitation factor. Phytoplankton communities were identified as a total of 413 taxa which were composed of 375 species, 21 varieties, 2 forma and 15 unidentified species. The standing crops of phytoplankton communities and chlorophyll-a concentrations ranged 330 ${\sim}$ 36, 420 cells $mL^{-1}$ and $2.5\;{\sim}\;170.7\;{\mu}g\;L^{-1}$ respectively, and showed a decreasing tendency after flowing through the wetland at almost stations. Dominant species were 14 taxa at all stations which were Euglena oblonga, Synura spinosa, and etc. The species composition, standing crops and chlorophyll concentrations of phytoplankton communities appeared a distinct differences between open waters of inlet from stream and open waters flowed through the wetland. Theses results were affected from decreasing effects of TN, TP and SS by flowed through the wetland from inlet waters of streams.

Ecological Restoration Plan for a Small Scale Public Construction Area - A Case Study on Ilsan Water Treatment Plant, Goyang-Si - (소규모 공공시설 개발 사업지의 생태적 복원 연구 - 고양시 일산정수장 조성예정지를 사례로 -)

  • Lee, soo-Dong;Kang, Hyun-Kyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.35 no.6
    • /
    • pp.48-63
    • /
    • 2008
  • This research is to apply suitable natural ecosystem evaluation criteria in order to develop the ecosystem conservation, restoration and ways to build substitute habitats as a compensation plan for damaged soundly natural ecosystems in small-scale projects such as resource recovery facility, filtration, etc. The environmental ecology evaluation i.e. generally based on their actual vegetation, community structure, wildlife, water system survey were measured the primary plans for reflecting unique natural environment level of site. As a result, it is necessary to conserve the land in fallow type of wetland, good conservative condition of deciduous forest, wetlanded watercourse for amphibia and reptiles crossing. However, the plan of filtration plant was destroyed wetland(sound ecosystem), natural forest, asian toad spawning area. According to the result of it schemed to build alternative wetland and spawning area, plan to healthy ecosystem and surface soil transplantation as compensation plan. The alternative wetland and spawning area are not only created a various water levels like depth of water is $0{\sim}30cm,\;30{\sim}60cm$, more than 1.5m but also it leads to asian toad spawning and wildlife inhabitant. Moreover, the ecosystem and surface soil transplantation be applied to use the Quercus acutissima forest resources(114 upper trees, 71 canopy trees, 401 shrubs) and surface soil$(5,072m^3)$ in ecology creation sets.

A Study on the Treatment of Parathion Pesticide Using Marsh and Pond Type Constructed Wetlands (Marsh와 Pond 형태의 인공 습지를 이용한 Parathion 농약의 처리에 관한 연구)

  • Kim, Se-Kyung;Choi , Jong-Kyu;Oh, Se-Hee;Kang, Ho-Jeong;Zoh, Kyung-Duk
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.3
    • /
    • pp.214-220
    • /
    • 2004
  • The microcosm type wetland systems were constructed in order to treat wastewater contaminated with parathion. The microcosm reactor consisted of marsh and pond type. The experiment was carried out using batch (marsh or pond) and continuous (marsh-pond and pond-marsh type) systems. In the batch reactor, marsh-type wetland completely removed parathion in water within 8 days, while pond reactor removed 97% of parathion during the same period. During parathion degradation, the amount of 4-nitrophenol production, one of the metabolites from parathion degradation, was higher in marsh-type batch reactor. In the continuous systems, both marsh-pond and pond-marsh combination systems effectively removed parathion from water, and the production of 4-nitrophenol was also minimal. In the extraction experiment, the parathion and its metabolite were not found in the wetland soil and the plant. In order to achieve both aerobic and anaerobic conditions, the continuous wetland system combining marsh and pond type can be the alternative for the non-point source pollutants such as parathion pesticide.

A Plan for Utilizing the Buffering Vegetation based on the Land use Type (토지이용 특성에 어울리는 완충식생 활용 계획)

  • An, Ji Hong;Lim, Chi Hong;Lim, Yun Kyung;Nam, Kyeong Bae;Pi, Jung Hun;Lee, Chang Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.5
    • /
    • pp.465-474
    • /
    • 2016
  • Since Gyungan stream is included in the protected zone of the water supply source of the Metropolitan area in Korea, the water quality needs to be continuously managed. Therefore, a measure is required that can inhibit the flow of water pollutant into the water body and facilitate the ecological restoration of riparian vegetation. A field survey was conducted on the hydrological characteristics of the landscape elements established on the downstream catchment of the Gyungan stream, the result of which showed that the paddy field and urbanized area can be regarded as point pollution sources. The upland field can be regarded as a non-point pollution source. In order to improve the water quality in the Paldang lake, we first recommended creating a riparian vegetation belt. We also suggested introducing a treatment wetland and an artificial plant island to places in which the creation of a riparian vegetation belt is not ensured. We recommend creating a treatment wetland equipped with diverse functional groups. For creating the plant island, we recommend Zizania latifolia and Typha orientalis, which showed the highest productivity among aquatic plants. The former could be introduced around the outlet of a paddy field and the estuary of tributaries, while the latter could be introduced to a water body directly sourced from mountainous land.

Development and Application of a Model for Restoring a Vegetation Belt to Buffer Pollutant Discharge (수질 오염물질 배출저감을 위한 완충식생 복원 모델 개발)

  • An, Ji Hong;Lim, Chi Hong;Lim, Yun Kyung;Nam, Kyeong Bae;Pi, Jung Hun;Moon, Jeong Sook;Bang, Je Yong;Lee, Chang Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.2
    • /
    • pp.205-215
    • /
    • 2016
  • In order to improve water quality in the Paldang Lake, a riparian vegetation belt, treatment wetland, and artificial floating island were designed for introduction in the upland field, the estuary of tributaries, and the section of water facing mountainous land, respectively. We synthesized vegetation information collected from a reference river and found that herbaceous, shrubby, and tree vegetation zones tended to be dominated by Phragmites japonica, Phalaris arundinacea, etc.; Salix gracilistyla, S. integra, etc.; and S. koreensis, S. subfragilis, and Morus alba, respectively. In our plan, the herbaceous vegetation zone, which is established on floodplains with a high frequency of disturbance, will be left in its natural state. A shrubby vegetation zone will be created by imitating the species composition of the reference river in the ecotone between floodplain and embankment. A tree vegetation zone will be created by imitating species composition on the embankment slope. In the treatment wetland, we plan to create emerged and softwood plant zones by imitating the species composition of the Zizania latifolia community, the Typha orientalis community, the P. communis community, the S. integra community, and the S. koreensis community. The floating island will be created by restoring Z. latifolia and T. orientalis for water purification purposes.

Feasibility Study of Wetland-pond Systems for Water Quality Improvement and Agricultural Reuse (습지-연못 연계시스템에 의한 수질개선과 농업적 재이용 타당성 분석)

  • Jang, Jae-Ho;Jung, Kwang-Wook;Ham, Jong-Hwa;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.3 s.108
    • /
    • pp.344-354
    • /
    • 2004
  • A pilot study was performed from September 2000 to April 2004 to examine the feasibility of the wetland-pond system for the agricultural reuse of reclaimed water. The wetland system was a subsurface flow type, with a hydraulic residence time of 3.5 days, and the subsequent pond was 8 $m^3$ in volume (2 m ${\times}$ 2 m ${\times}$ 2 m) and operated with intermittent-discharge and continuous flow types. The wetland system was effective in treating the sewage; median removal efficiencies of $BOD_5$ and TSS were above 70.0%, with mean effluent concentrations of 27.1 and 16.8 mg $L^{-1}$, respectively, for these constituents. However, they did often exceed the effluent water quality standards of 20 mg $L^{-1}$. Removal of T-N and T-P was relatively less effective and mean effluent concentrations were approximately 103.2 and 7.2 mg $L^{-1}$, respectively. The wetland system demonstrated high removal rate (92 ${\sim}$ 90%) of microorganisms, but effluent concentrations were in the range of 300 ${\sim}$ 16,000 MPN 100 $mL^{-1}$ which is still high for agricultural reuse. The subsequent pond system provided further treatment of the wetland effluent, and especially additional microorganisms removal in addition to wetland-pond system could reduce the mean concentration to 1,000 MPN 100 $mL^{-1}$ from about $10^5$ MPN 100 $mL^{-1}$ of wetland influent. Other parameters in the pond system showed seasonal variation, and the upper layer of the pond water column became remarkably clear immediately after ice melt. Overall, the wetland system was found to be adequate for treating sewage with stable removal efficiency, and the subsequent pond was effective for further polishing. This study concerned agricultural reuse of reclaimed water using natural systems. Considering stable performance and effective removal of bacterial indicators as well as other water quality parameters, low maintenance, and cost-effectiveness, wetland- pond system was thought to be an effective and feasible alternative for agricultural reuse of reclaimed water in rural area.

Risk assessment of wastewater reuse for Irrigation water (하수처리수의 관개용수 재이용을 위한 위해성 평가)

  • Han, Jung-Yoon;Yoon, Chun-Gyeong;Jung, Kwang-Wook;Jang, Jae-Ho
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.661-666
    • /
    • 2005
  • Wastewater reuse are exposed public health risk by pathogens. Therefore, this study was examined for microbial risk assessment after irrigation as treated wastewater in paddy rice plots. Five treatments were used: biofilter effluent, UV disinfected water, pond treatment, wetland treatment and conventional irrigation water. Risk assessment was calculated based on the beta-Poisson model by concentration of E. coli from 2003 to 2005. Monte-Carlo simulation (n=10,000) was used to estimate the risk characterization of uncertainty. The risk range was from $10^{-5}$ to $10^{-8}$ except biofilter effluent was $10^{-4}$ in June. The USEPA(1992) has recommended that risk of < $10^{-4}$ is acceptable level of safety for potable waters. In 2005, risk value was lower than 2003, 2004 because of the first irrigation for plowing water is lower E. coli concentration used tap water. It is shown that the first irrigation water quality was important for wastewater irrigation in paddy. UV disinfection and natural treatment used pond and wetland were thought to be an effective for wastewater reuse.

  • PDF

Analysis of the particulate matters in the vertical-flow woodchip wetland treating stormwater from paved road (포장도로 강우유출수 처리목적의 수직흐름형 우드칩 충진 습지에서 입자상 물질분석)

  • Yuan, Qingke;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.20 no.2
    • /
    • pp.145-154
    • /
    • 2018
  • In this study, three pilot-scale wetland systems were built for treating stormwater runoff from asphalt road. Each of the system consists of a settling tank and a vertical flow wetland packed with 25%, 50%, and 75% woodchip as treatment media. According to the analysis of the distributions of particle size, it was found that solids ranging in size $0.52-30{\mu}m$ were predominant in the stormwater runoff. After 24-hours settling, those coarser than $20{\mu}m$ were significantly detained. Further retention, especially for the finer-sized fraction, occurred in the wetland through internal recirculation during the dry day periods. As a primary media of the wetland, woodchip showed a high filtration and attachment capacity for the particulates in pre-settled stormwater, whereas overall amount of solids in the wetland effluent increased due to the detachment of woody elements from the media. This was observed mainly during the initial 75 days of operation, and the size and detachment rate were found to be strongly related with the woodchip packing ratio. The mechanism involving woody particle detachment was modeled as a first-order form. In addition, water quality factors and operational parameters affecting the detachment were analyzed and discussed.

A Case Study Stormwater Treatment by Channel-Type Wetland Constructed on the Flood Plane of the Stream (하천 고수부지에 설치한 수로형 인공습지에 의한 강우 유출수 처리에 관한 연구)

  • Kim, Piljoo;Han, Euilyung;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.80-89
    • /
    • 2017
  • Researches about NPS(Non-point Pollution Source) reduction have been widely carried out in recent years. A pilot channel-type constructed wetland (wet swale) was constructed in Rongyin area to treat stormwater generated from a green house agro-land of 22.7 ha. From 2006 to 2008, monitoring was conducted to evaluate its performance on the removal effect for organic pollutants as well as nutrients. Totally, sampling trips of 17 rainfall events were made and they covered most types of storm events in Korea. The channel-type constructed wetland have average removal efficiencies of 78.3~92.0%, 56.4~66.1%, 28.2~45.5% and 50.6~66.4% for SS, COD, TN and TP, respectively. According to four methods for estimating the removal efficiency, the average efficiencies of TSS, COD, TN and TP are 86.0%, 60.1%, 30.1% and 53.5%, respectively. From 2006 to 2008, annual efficiency improved due to infiltration potential increase. It was found that most of the pollutants removed in this channel type of wetland was particulate solids bound pollutants, which is assumed fact that it lacks of physico-chemical treatment conditions which are commonly observed in the retention type of constructed wetlands.