• 제목/요약/키워드: treatment plans

Search Result 587, Processing Time 0.025 seconds

Comparison of Linear Accelerator and Helical Tomotherapy Plans for Glioblastoma Multiforme Patients

  • Koca, Timur;Basaran, Hamit;Sezen, Duygu;Karaca, Sibel;Ors, Yasemin;Arslan, Deniz;Aydin, Aysen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7811-7816
    • /
    • 2014
  • Background: Despite advances in radiotherapy, overall survival of glioblastoma multiforme (GBM) patients is still poor. Moreover dosimetrical analyses with these newer treatment methods are insufficient. The current study is aimed to compare intensity modulated radiation therapy (IMRT) linear accelerator (linac) and helical tomotherapy (HT) treatment plans for patients with prognostic aggressive brain tumors. Material and Methods: A total of 20 GBM patient plans were prospectively evaluated in both linac and HT planning systems. Plans are compared with respect to homogenity index, conformity index and organs at risk (OAR) sparing effects of the treatments. Results: Both treatment plans provided good results that can be applied to GBM patients but it was concluded that if the critical organs with relatively lower dose constraints are closer to the target region, HT for radiotherapeutical application could be preferred. Conclusion: Tomotherapy plans were superior to linear accelerator plans from the aspect of OAR sparing with slightly broader low dose ranges over the healthy tissues. In case a clinic has both of these IMRT systems, employment of HT is recommended based on the observed results and future re-irradiation strategies must be considered.

A Study on the Field Application and Prospect of Artificial Intelligence and Bio-Sensing Technology in Physical Therapy: Focusing on Customized Rehabilitation Treatment (물리치료 분야에서 인공지능 및 바이오센싱 기술의 현장적용 및 전망에 관한 연구: 맞춤형 재활치료를 중심으로)

  • Kyung-Tae Yoo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.18 no.3
    • /
    • pp.73-84
    • /
    • 2023
  • PURPOSE: This study analyzed the impact of AI and biosensors on physical therapy, identifying the stage of customized technology development and future prospects. AI and biosensors improve the efficiency, establish customized treatment plans, and expand patient treatment opportunities. The study employed a literature review by searching databases and collecting research. METHODS: This study searched various databases related to the topic, collected existing research, papers, and reports, evaluated the literature, and summarize the results. RESULTS: Exercise therapy utilizing artificial intelligence can provide personalized and optimal exercise plans while monitoring rehabilitation progress. In addition, biosensors such as EMG sensors and accelerometers can monitor the individual progress in physical therapy, particularly in stroke patients, which can help improve physical therapy strategy and promote patient recovery. CONCLUSION: This study suggested that artificial intelligence can be applied in many areas of physical therapy, such as exercise therapy, customized treatment plans, rehabilitation and management, pain management, neuro rehabilitation, and auxiliary devices. Using AI technology, it is possible to analyze and improve exercise and posture, retrain the central nervous system, establish customized treatment plans for individual patients, predict and compare patient progress before and after treatment, and provide customized pain analysis and treatment methods. In addition, AI can provide neuro rehabilitation programs and customized auxiliary devices.

Mediating Effects of Role Perception of Life-sustaining Treatment in the Relationship between Knowledge of Life-sustaining Treatment Plans and Attitudes toward Withdrawal of Life-sustaining Treatment among Nursing College Students

  • Park, Youngmi;Nam, Keumhee;Bae, Joohee
    • Journal of Hospice and Palliative Care
    • /
    • v.24 no.1
    • /
    • pp.36-45
    • /
    • 2021
  • Purpose: This study examined the relationship between Knowledge of Life-sustaining Treatment Plans and Attitudes toward Withdrawal of Life-sustaining Treatment among nursing college students, and attempted to identify the mediating effect of Role Perception on Life-sustaining Treatment in that relationship. It is hoped that the findings will ultimately contribute to the development of active nursing strategies. Methods: The participants were 142 nursing college students in the third and fourth years of study who had experienced clinical practice at two universities in cities Y and C. Data were collected from November 1 to 30, 2019. For data analysis, SPSS for Windows version 22.0 was used to calculate descriptive statistics, the t-test, Pearson's correlation coefficients, and multiple regression. To analyze the mediating effect, the Baron and Kenny bootstrapping method was used. Results: Attitudes toward Withdrawal of Life-sustaining Treatment of nursing college students had a significant positive correlation with Knowledge of Life-sustaining Treatment Plans (r=0.34, P<0.001) and Role Perception on Life-sustaining Treatment (r=0.44, P<0.001). Role Perception on Life-sustaining Treatment partially mediated the relationship between Knowledge of Life-sustaining Treatment Plans and Attitudes toward Withdrawal of Life-sustaining Treatment (95% CI, 0.446~1.055). Conclusion: Based on the results of this study, improving nursing college students' Role Perception on Life-sustaining Treatment could be used as a coping strategy to establish positive Attitudes toward Withdrawal of Life-sustaining Treatment.

Enhancing value of quality assurance rounds in improving radiotherapy management: a retrospective analysis from King Hussein Cancer Center in Jordan

  • Khader, Jamal K.;Al-Mousa, Abdelatif M.;Mohamad, Issa A.;Abuhijlih, Ramiz A.;Al-Khatib, Sondos A.;Alnsour, Anoud Z.;Asha, Wafa A.;Ramahi, Shada W.;Hosni, Ali A.;Abuhijla, Fawzi J.
    • Radiation Oncology Journal
    • /
    • v.37 no.1
    • /
    • pp.60-65
    • /
    • 2019
  • Purpose: The quality assurance (QA) chart rounds are multidisciplinary meetings to review radiation therapy (RT) treatment plans. This study focus on describing the changes in RT management based on QA round reviews in a single institution. Materials and Methods: After 9 full years of implementation, a retrospective review of all patients whose charts passed through departmental QA chart rounds from 2007 to 2015. The reviewed cases were presented for RT plan review; subcategorized based on decision in QA rounds into: approved, minor modifications or major modifications. Major modification defined as any substantial change which required patient re-simulation or re-planning prior to commencement of RT. Minor modification included treatment plan changes which didn't necessarily require RT re-planning. Results: Overall 7,149 RT treatment plans for different anatomical sites were reviewed at QA rounds. From these treatment plans, 6,654 (93%) were approved, 144 (2%) required minor modifications, while 351 (5%) required major modifications. Major modification included changes in: selected RT dose (96/351, 27%), target volume definition (127/351, 36%), organs-at-risk contouring (10/351, 3%), dose volume objectives/constraints criteria (90/351, 26%), and intent of treatment (28/351, 8%). The RT plans which required major modification according to the tumor subtype were as follows: head and neck (104/904, 12%), thoracic (12/199, 6%), gastrointestinal (33/687,5%), skin (5/106, 5%), genitourinary (16/359, 4%), breast (104/2387, 4%), central nervous system (36/846, 4%), sarcoma (11/277, 4%), pediatric (7/251, 3%), lymphoma (10/423, 2%), gynecological tumors (2/359, 1%), and others (11/351, 3%). Conclusion: Multi-disciplinary standardized QA chart rounds provide a comprehensive and an influential method on RT plans and/or treatment decisions.

Comparative Study Between Respiratory Gated Conventional 2-D Plan and 3-D Conformal Plan for Predicting Radiation Hepatitis (간암에서 호흡주기를 고려한 2-차원 방사선 치료 방법과 3-차원 입체조형 치료방법에서 방사선 간염 예측의 비교연구)

  • Lee Sang-wook;Kim Gwi Eon;Chung Kap Soo;Lee Chang Geol;Seong Jinsil;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.16 no.4
    • /
    • pp.455-467
    • /
    • 1998
  • Purpose : To evaluate influences associated with radiation treatment planning obtained with the patient breathing freely. Materials and Methods : We compared reduction or elimination of planning target volume (PTV) margins with 2-D conventional plan with inclusion of PTV margins associated with breathing with 3-D conformal therapy. The respiratory non gated 3-D conformal treatment plans were compared with respiratory gated conventional 2-D plans in 4 patients with hepatocellular carcinomas. Isodose distribution, dose statistics, and dose volume histogram (DVH) of PTVs were used to evaluate differences between respiratory gated conventional 2-D plans and respiratory non gated 3-D conformal treatment plans. In addition. the risk of radiation exposure of surrounding normal liver and organs are evaluated by means of DVH and normal tissue complication probabilities (NTCPs). Results : The vertical movement of liver ranged 2-3 cm in all patients. We found no difference between respiratory gated 2-D plans and 3-D conformal treatment plans with the patients breathing freely. Treatment planning using DVH analysis of PTV and the normal liver was used for all patients. DVH and calculated NTCP showed no difference in respiratory gated 2-D plans and respiratory non gated 3-D conformal treatment plans. Conclusion : Respiratory gated radiation therapy was very important in hepatic tumors because radiation induced hepatitis was dependent on remaining normal liver volume. Further investigational studies for respiratory gated radiation.

  • PDF

Evaluation of Treatment Plan Quality between Magnetic Resonance-Guided Radiotherapy and Volumetric Modulated Arc Therapy for Prostate Cancer

  • Chang Heon Choi;Jin Ho Kim;Jaeman Son;Jong Min Park;Jung-in Kim
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.121-128
    • /
    • 2022
  • Purpose: This study evaluated the quality of plans based on magnetic resonance-guided radiotherapy (MRgRT) tri-Co-60, linac, and conventional linac-based volumetric modulated arc therapy (linac-VMAT) for prostate cancer. Methods: Twenty patients suffering from prostate cancer with intermediate risk who were treated by MAT were selected. Additional treatment plans (primary and boost plans) were generated based on MRgRT-tri-Co-60 and MRgRT-linac. The planning target volume (PTV) of MRgRT-based plans was created by adding a 3 mm margin from the clinical target volume (CTV) due to high soft-tissue contrast and real-time motion imaging. On the other hand, the PTV of conventional linac was generated based on a 1 cm margin from CTV. The targets of primary and boost plans were prostate plus seminal vesicle and prostate only, respectively. All plans were normalized to cover 95% of the target volume by 100% of the prescribed dose. Dosimetric characteristics were evaluated for each of the primary, boost, and sum plans. Results: For target coverage and conformity, the three plans showed similar results. In the sum plans, the average value of V65Gy of the rectum of MRgRT-linac (2.62%±2.21%) was smaller than those of MRgRT tri-Co-60 (9.04%±3.01%) and linac-VMAT (9.73%±7.14%) (P<0.001). In the case of bladder, the average value of V65Gy of MRgRT-linac was also smaller. Conclusions: In terms of organs at risk sparing, MRgRT-linac shows the best value while maintaining comparable target coverage among the three plans.

Dosimetric Plan Comparison of Accelerated Partial Breast Irradiation (APBI) Using CyberKnife

  • Lee, Chang Yeol;Kim, Woo Chul;Kim, Hun Jeong;Lee, Jeongshim;Park, Seungwoo;Huh, Hyun Do
    • Progress in Medical Physics
    • /
    • v.29 no.2
    • /
    • pp.73-80
    • /
    • 2018
  • Accelerated partial breast irradiation (APBI) is a new treatment delivery technique that decreases overall treatment time by using higher fractional doses than conventional fractionation. Here, a quantitative analysis study of CyberKnife-based APBI was performed on 10 patients with left-sided breast cancer who had already finished conventional treatment at the Inha University Hospital. Dosimetric parameters for four kinds of treatment plans (3D-CRT, IMRT, VMAT, and CyberKnife) were analyzed and compared with constraints in the NSABP B39/RTOG 0413 protocol and a published CyberKnife-based APBI study. For the 10 patients recruited in this study, all the dosimetric parameters, including target coverage and doses to normal structures, met the NSABP B39/RTOG 0413 protocol. Compared with other treatment plans, a more conformal dose to the target and better dose sparing of critical structures were observed in CyberKnife plans. Accelerated partial breast irradiation via CyberKnife is a suitable treatment delivery technique for partial breast irradiation and offers improvements over external beam APBI techniques.

Cardiac dose reduction with breathing adapted radiotherapy using self respiration monitoring system for left-sided breast cancer

  • Sung, KiHoon;Lee, Kyu Chan;Lee, Seung Heon;Ahn, So Hyun;Lee, Seok Ho;Choi, Jinho
    • Radiation Oncology Journal
    • /
    • v.32 no.2
    • /
    • pp.84-94
    • /
    • 2014
  • Purpose: To quantify the cardiac dose reduction during breathing adapted radiotherapy using Real-time Position Management (RPM) system in the treatment of left-sided breast cancer. Materials and Methods: Twenty-two patients with left-sided breast cancer underwent CT scans during breathing maneuvers including free breathing (FB), deep inspiration breath-hold (DIBH), and end inspiration breath-hold (EIBH). The RPM system was used to monitor respiratory motion, and the in-house self respiration monitoring (SRM) system was used for visual feedback. For each scan, treatment plans were generated and dosimetric parameters from DIBH and EIBH plans were compared to those of FB plans. Results: All patients completed CT scans with different breathing maneuvers. When compared with FB plans, DIBH plans demonstrated significant reductions in irradiated heart volume and the heart $V_{25}$, with the relative reduction of 71% and 70%, respectively (p < 0.001). EIBH plans also resulted in significantly smaller irradiated heart volume and lower heart $V_{25}$ than FB plans, with the relative reduction of 39% and 37%, respectively (p = 0.002). Despite of significant expansion of lung volume using inspiration breath-hold, there were no significant differences in left lung $V_{25}$ among the three plans. Conclusion: In comparison with FB, both DIBH and EIBH plans demonstrated a significant reduction of radiation dose to the heart. In the training course, SRM system was useful and effective in terms of positional reproducibility and patient compliance.

Development of Model Plans in Three Dimensional Conformal Radiotherapy for Brain Tumors (뇌종양 환자의 3차원 입체조형 치료를 위한 뇌내 주요 부위의 모델치료계획의 개발)

  • Pyo Hongryull;Lee Sanghoon;Kim GwiEon;Keum Kichang;Chang Sekyung;Suh Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.20 no.1
    • /
    • pp.1-16
    • /
    • 2002
  • Purpose : Three dimensional conformal radiotherapy planning is being used widely for the treatment of patients with brain tumor. However, it takes much time to develop an optimal treatment plan, therefore, it is difficult to apply this technique to all patients. To increase the efficiency of this technique, we need to develop standard radiotherapy plant for each site of the brain. Therefore we developed several 3 dimensional conformal radiotherapy plans (3D plans) for tumors at each site of brain, compared them with each other, and with 2 dimensional radiotherapy plans. Finally model plans for each site of the brain were decide. Materials and Methods : Imaginary tumors, with sizes commonly observed in the clinic, were designed for each site of the brain and drawn on CT images. The planning target volumes (PTVs) were as follows; temporal $tumor-5.7\times8.2\times7.6\;cm$, suprasellar $tumor-3\times4\times4.1\;cm$, thalamic $tumor-3.1\times5.9\times3.7\;cm$, frontoparietal $tumor-5.5\times7\times5.5\;cm$, and occipitoparietal $tumor-5\times5.5\times5\;cm$. Plans using paralled opposed 2 portals and/or 3 portals including fronto-vertex and 2 lateral fields were developed manually as the conventional 2D plans, and 3D noncoplanar conformal plans were developed using beam's eye view and the automatic block drawing tool. Total tumor dose was 54 Gy for a suprasellar tumor, 59.4 Gy and 72 Gy for the other tumors. All dose plans (including 2D plans) were calculated using 3D plan software. Developed plans were compared with each other using dose-volume histograms (DVH), normal tissue complication probabilities (NTCP) and variable dose statistic values (minimum, maximum and mean dose, D5, V83, V85 and V95). Finally a best radiotherapy plan for each site of brain was selected. Results : 1) Temporal tumor; NTCPs and DVHs of the normal tissue of all 3D plans were superior to 2D plans and this trend was more definite when total dose was escalated to 72 Gy (NTCPs of normal brain 2D $plans:27\%,\;8\%\rightarrow\;3D\;plans:1\%,\;1\%$). Various dose statistic values did not show any consistent trend. A 3D plan using 3 noncoplanar portals was selected as a model radiotherapy plan. 2) Suprasellar tumor; NTCPs of all 3D plans and 2D plans did not show significant difference because the total dose of this tumor was only 54 Gy. DVHs of normal brain and brainstem were significantly different for different plans. D5, V85, V95 and mean values showed some consistent trend that was compatible with DVH. All 3D plans were superior to 2D plans even when 3 portals (fronto-vertex and 2 lateral fields) were used for 2D plans. A 3D plan using 7 portals was worse than plans using fewer portals. A 3D plan using 5 noncoplanar portals was selected as a model plan. 3) Thalamic tumor; NTCPs of all 3D plans were lower than the 2D plans when the total dose was elevated to 72 Gy. DVHs of normal tissues showed similar results. V83, V85, V95 showed some consistent differences between plans but not between 3D plans. 3D plans using 5 noncoplanar portals were selected as a model plan. 4) Parietal (fronto- and occipito-) tumors; all NTCPs of the normal brain in 3D plans were lower than in 2D plans. DVH also showed the same results. V83, V85, V95 showed consistent trends with NTCP and DVH. 3D plans using 5 portals for frontoparietal tumor and 6 portals for occipitoparietal tumor were selected as model plans. Conclusion : NTCP and DVH showed reasonable differences between plans and were through to be useful for comparing plans. All 3D plans were superior to 2D plans. Best 3D plans were selected for tumors in each site of brain using NTCP, DVH and finally by the planner's decision.

Influence of different boost techniques on radiation dose to the left anterior descending coronary artery

  • Park, Kawngwoo;Lee, Yongha;Cha, Jihye;You, Sei Hwan;Kim, Sunghyun;Lee, Jong Young
    • Radiation Oncology Journal
    • /
    • v.33 no.3
    • /
    • pp.242-249
    • /
    • 2015
  • Purpose: The purpose of this study is to compare the dosimetry of electron beam (EB) plans and three-dimensional helical tomotherapy (3DHT) plans for the patients with left-sided breast cancer, who underwent breast conserving surgery. Materials and Methods: We selected total of 15 patients based on the location of tumor, as following subsite: subareolar, upper outer, upper inner, lower lateral, and lower medial quadrants. The clinical target volume (CTV) was defined as the area of architectural distortion surrounded by surgical clip plus 1 cm margin. The conformity index (CI), homogeneity index (HI), quality of coverage (QC) and dose-volume parameters for the CTV, and organ at risk (OAR) were calculated. The following treatment techniques were assessed: single conformal EB plans; 3DHT plans with directional block of left anterior descending artery (LAD); and 3DHT plans with complete block of LAD. Results: 3DHT plans, regardless of type of LAD block, showed significantly better CI, HI, and QC for the CTVs, compared with the EB plans. However, 3DHT plans showed increase in the $V_{1Gy}$ at skin, left lung, and left breast. In terms of LAD, 3DHT plans with complete block of LAD showed extremely low dose, while dose increase in other OARs were observed, when compared with other plans. EB plans showed the worst conformity at upper outer quadrants of tumor bed site. Conclusion: 3DHT plans offer more favorable dose distributions to LAD, as well as improved target coverage in comparison with EB plans.