• Title/Summary/Keyword: treadmill walking

Search Result 265, Processing Time 0.033 seconds

Effect of Static Recovery and Dynamic Recovery on the Cardiopulmonary Variables, Lower Extremity Muscle Activity after Progressive Resistance Exercise to Maximal Point

  • Yoon, Jung-Gyu;Kim, Ga-Yeong;Kim, Min-A;Lee, Seung-Mi;Kwon, Seung-Min;Yoo, Kyung-Tae;Cho, Joon-Haeng;Choi, Jung-Hyun
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.2 no.1
    • /
    • pp.237-243
    • /
    • 2011
  • This study was to examine on the respiratory variables, heart rate and muscle activity between the static recovery and dynamic recovery after progressive resistance exercise to maximal point. Subjects were 15 students enrolled in N University. All were tested two times (static recovery and dynamic recovery) and were requested to perform a walking on a treadmill after progressive resistance exercise to maximal point. Electromyography(EMG) was used to monitor the muscle activity(TA: Tibialis Anterior, MG: Medial Gastrocnemius) during gait. CPEX-1 was used to measure the respiratory variables and heart rate. The dynamic recovery group was shown the significant lower heart rate than that of static recovery group at during gait. Respiratory rate showed statistically a significant difference. Electromyography(RMS, root mean square) showed a non-significant difference. But the dynamic recovery group of muscle activity was found highly in TA and MG. This study indicated that the dynamic recovery method evidenced more faster than the static recovery method. And this type of dynamic rest by walking can be a help of recovery after exercise.

Application of the Chaos Theory to Gait Analysis (카오스 이론을 적용한 보행분석 연구)

  • Park, Ki-Bong;Ko, Jae-Hun;Moon, Byung-Young;Suh, Jeung-Tak;Son, Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.194-201
    • /
    • 2006
  • Gait analysis is essential to identify accurate cause and knee condition from patients who display abnormal walking. Traditional linear tools can, however, mask the true structure of motor variability, since biomechanical data from a few strides during the gait have limitation to understanding the system. Therefore, it is necessary to propose a more precise dynamic method. The chaos analysis, a nonlinear technique, focuses on understand how variations in the gait pattern change over time. Eight healthy eight subjects walked on a treadmill for 100 seconds at 60 Hz. Three dimensional walking kinematic data were obtained using two cameras and KWON3D motion analyzer. The largest Lyapunov exponent from the measured knee angular displacement time series was calculated to quantify local stability. This study quantified the variability present in time series generated from gait parameter via chaos analysis. Knee flexion-extension patterns were found to be chaotic. The proposed Lyapunov exponent can be used in rehabilitation and diagnosis of recoverable patients.

Effects of Body-Adhesive Backpack Condition on Craniovertebral Angle, Sagittal Shoulder Angle and Muscle Fatigue

  • Son, Jinkyu;Kim, Ho;Shin, Wonseob
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.11 no.4
    • /
    • pp.2203-2211
    • /
    • 2020
  • Background: Backpacks are one of the most widely used accessories in modern society. However, previous studies have shown that carrying a backpack can cause various musculoskeletal problems. Objectives: To investigate the effects of a body-adhesive backpack on craniovertebral angle, sagittal shoulder angle and the muscle fatigue in the upper extremity. Design: Randomized cross-over design. Methods: For this study, 36 healthy university students participated in this study. The experiment was conducted three times using common backpack, and body-adhesive backpack condition. The angles of the cervical spine and shoulder joints of the subjects were calculated without the backpack. Electrodes were placed at upper trapezius, lower trapezius, rectus abdominis and erector spinae to check for muscle fatigue. Subjects carried a backpack and walked on a treadmill for 15 minutes at 4 km/h. The muscle fatigue signal was also measured while walking. After walking, the craniovertebral and sagittal shoulder angles were measured again while subjects carried backpack. Results: As a result of this study, body-adhesive backpack condition showed significant decrease and significant increase in craniovertebral angle and sagittal shoulder angle than common backpack (P<.05). Body-adhesive backpack condition showed significant decrease in upper trapezius, lower trapezius, erector spinae, and rectus abdominis when compared to a common backpack (P<.05). Conclusion: This study suggests that a body-adhesive backpack is more beneficial in correcting body posture than a common backpack.

Effects of Changes in Illumination Level and Slope on Fall-Related Biomechanical Risk Factors While Walking for Elderly Women (조도와 주로 변화가 노인 여성 보행 시 낙상 관련 운동역학적 위험요인에 미치는 영향)

  • Jeon, Hyun-Min;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.4
    • /
    • pp.413-421
    • /
    • 2015
  • Objective : The purpose of this study was to investigate biomechanical changes of the lower limb including dynamic stability with changes in illumination (300Lx, 150Lx, and 5Lx) and slope (level and $15^{\circ}$ downhill) as risk factors for elderly falls. Method : Fifteen elderly females were selected for this study. Seven infrared cameras (Proreflex MCU 240: Qualisys, Sweden) and an instrumented treadmill (Bertec, USA) surrounded by illumination regulators and lights to change the levels of illumination were used to collect the data. A One-Way ANOVA with repeated measures using SPSS 12.0 was used to analyze statistical differences by the changes in illumination and slope. Statistical significance was set at ${\alpha}=.05$. Results : No differences in the joint movement of the lower limbs were found with changes in illumination (p>.05). The maximum plantar flexion movement of the ankle joints appeared to be greater at 5Lx compared to 300Lx during slope gait (p<.05). Additionally, maximum extension movement of the hip joints appeared to be greater at 5Lx and 150Lx compared to 300Lx during slope gait (p<.05). The maximum COM-COP angular velocity (direction to medial side of the body) of dynamic stability appeared to be smaller at 150Lx and 300Lx compared to 5Lx during level gait (p<.05). The minimum COM-COP angular velocity (direction to lateral side to the body) of dynamic stability appeared smaller at 150Lx compared to 5Lx during level gait (p<.05). Conclusion : In conclusion, elderly people use a stabilization strategy that reduces walk speed and dynamic stability as darkness increases. Therefore, the changes in illumination during gait induce the changes in gait mechanics which may increase the levels of biomechanical risk in elderly falls.

Virtual Walking Tour System (가상 도보 여행 시스템)

  • Kim, Han-Seob;Lee, Jieun
    • Journal of Digital Contents Society
    • /
    • v.19 no.4
    • /
    • pp.605-613
    • /
    • 2018
  • In this paper, we propose a system to walk around the world with virtual reality technology. Although the virtual reality users are interested in the virtual travel contents, the conventional virtual travel contents have limited space for experiencing and lack of interactivity. In order to solve the problem of lack of realism and limited space, which is a disadvantage of existing contents, this system created a virtual space using Google Street View image. Users can have realistic experience with real street images, and travel a vast area of the world provided by Google Street View image. Also, a virtual reality headset and a treadmill equipment are used so that the user can actually walk in the virtual space, which maxmizes user interactivity and immersion. We expect this system contributes to the leisure activities of virtual reality users by allowing natural walking trip from famous tourist spots to even mountain roads and alleys.

Effects of ball kicking dual task training on gait performance and balance in individuals with chronic hemiparetic stroke

  • Kim, Minseong;Shim, Jaehun;Yu, Kyunghoon;Kim, Jiwon
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.4
    • /
    • pp.170-176
    • /
    • 2016
  • Objective: The purpose of this study was to compare the effect of ball kicking dual task gait training with the addition of a cognitive task with general treadmill gait training (TGT) on gait speed, gait endurance, functional gait, balance and balance confidence in patients with chronic hemiparetic stroke. Design: Randomized controlled trial. Methods: Fourteen stroke patients who volunteered to participate in this study were randomly divided into two groups with seven patients in each group: ball kicking dual task training (DTT) group and TGT group. The DTT group received ball kicking DTT with cognitive tasks consisted of three stages and the TGT group received TGT using normal walking speed, respectively, for 30 minutes per day 3 days per week for 4 weeks. Outcome assessments were made with the 10-meter walking test (10MWT), 6-minute walking test (6MWT), functional gait assessment (FGA), Berg balance scale (BBS), timed up and go test (TUG), and the activities-specific balance confidence (ABC) scale. Results: The DTT group showed more significant improvement in the 10MWT, 6MWT, FGA, BBS, TUG, and ABC than the TGT group (p<0.05). In addition, within groups comparison showed significant improvement in all variables (p<0.05). Conclusions: The findings suggest that both ball kicking dual task gait training and TGT improve gait performance and balance in patients with chronic hemiparetic stroke. However, ball kicking dual task gait training results showed more favorable outcomes than TGT for chronic hemiparetic stoke patients.

Biomechanical Analysis of Trail Running Shoes Applied to Korean Shoe-Lasts (한국인 족형을 적용한 트레일 러닝화의 생체역학적 분석)

  • Park, Seung-Bum;Lee, Kyung-Deuk;Kim, Dae-Woong;Yoo, Jung-Hyeon;Kim, Kyung-Hun;An, Chang-Shin;Lee, Tae-Yong
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.221-230
    • /
    • 2010
  • The purpose of this study was to analyze biomechanical factors of trail running shoes applied to korean shoe-lasts. 10 healthy male subjects with an average age of 37.2 years(SD=8.28), weight of 69.6 kg(SD=10.56) and a height of 171 cm(SD=4.93) were recruited for this study. Ten males walked on a treadmill wearing four different shoes. Foot pressure data was collected using a Pedar-X mobile system(Novel Gmbh., Germany) operating at the 1000 Hz. Surface EMG signals for tibialis anterior, gastrocnemius, vastus lateralis and biceps femoris were acquired at 1000 Hz using Noraxon TeleMyo DTS system(Noraxon Inc., USA). Foot pressure and leg muscle fatigue were measured and calculated during walking. The results are as follows: After walking 60 minutes, Type A showed a lower MPF. MPF values were significantly different from each muscle(p<.05). Therefore, Type A shoe might decrease muscle fatigue in the legs while walking. In addition, Type It showed that Type A shoe has the highest contact area and the lowest maximum pressure. As a result of the analysis, Trail running shoes will use a new design to reduce muscle fatigue and are expected to increase comfort and fitting.

Age Difference in the Cephalad Attenuation of Upper Body Accelerations During Fast Speed Walking (빠른 보행시 상체 가속도의 머리 방향 감쇄의 연령차)

  • Jeon, Hyeong-Min;Kim, Ji-Won;Kwon, Yu-Ri;Heo, Jae-Hoon;Eom, Gwang-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.349-353
    • /
    • 2016
  • The purpose of this study was to investigate possible age differences in the attenuation of acceleration in the upper body (from pelvis through shoulder to head) during fast walking. Thirty young and 29 elderly subjects participated in this study. Wireless acceleration sensors were attached on head, shoulder, and pelvis. Subjects performed two trials of fast walking on a treadmill, where the fast speed was defined as 1.5 times of the comfortable speed. Root-mean-squared (RMS) accelerations of each axis were compared with age group and sensor position as independent factors. In the AP direction, the pelvis acceleration was greater in the young and the shoulder-to-head attenuation was also greater in the young (p<0.001), so that the head acceleration was comparable between age groups (p=0.581). In the ML direction, the pelvis acceleration was greater in the young and also the pelvis-to-shoulder attenuation was greater in the young (p<0.001), so that the head acceleration was greater in the elderly group (p<0.001). Insufficient attenuation ML acceleration in the elderly resulting in the greater acceleration in the head may deteriorate the balance control which utilize feedback signals from the sensory organs in head, e.g., vestibular and visual systems.

Effect of Modified High-heels on Metatarsal Stress in Female Workers

  • Kim, Kwantae;Peng, Hsien-Te
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.3
    • /
    • pp.197-204
    • /
    • 2019
  • Objective: The purpose of this study was to identify the effect of high-heels (HH) modification on metatarsal stress in female workers. Method: Seven females who work in clothing stores ($heights=160.4{\pm}3.9cm$; $weights=47.4{\pm}4.1kg$; $age=31.3{\pm}11.1yrs$; $HH\;wear\;career=8{\pm}6.5yrs$) wore two types of HH (original and modified). The modified HH had been grooved with 1.5 cm radius and 0.2 cm depth around the first metatarsal area inside of the shoes using the modified shoe-last. Participants were asked to walk for 15 minutes on a treadmill and to stand for 10 minutes with original and modified HH, respectively. Kinetics data were collected by the F-scan in-shoe system. After each test, participants were asked to rate their perceived exertion using the Borg's 15-grade RPE scale and interviewed about their feeling of HH. Nonparametric Wilcoxon signed-rank test and effect size (Cohen's d) were used to determine the difference of the variables of interest between the original and modified HH. Results: In the present study, modified HH of the peak contact pressure of 1st metatarsal (PCP) left, PCP right, pressure time integral (PTI) left, peak pressure gradient (PPG) left during standing and PPG right during walking are greater than original HH. And even it didn't show statistically significant, the average in all pressure values of modified HH showed bigger than original HH. It surmised to be related to awkward with modified HH. Even though they said to feel the comfortable cause of big space inside of HH in the interview, they seemed to be not enough time to adapt with new HH. So their walking and standing postures were unstable. Conclusion: Modified the fore-medial part of HH can reduce the stress in the first metatarsal head and big toe area during standing and walking.

Effect of Gait Exercise Program on the Self-Efficacy and Parenting Attitude of Adolescent Spastic Cerebral Palsy - Case Study (보행운동프로그램이 청소년 경직형뇌성마비아동의 자아효능감 및 부모의 양육태도에 미치는 영향 - 사례연구)

  • Lee, Yeonseop;Seo, Dongkwon;Kim, Kyunghun;Lee, Yangjin
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.4
    • /
    • pp.183-190
    • /
    • 2020
  • Purpose : The purpose of this study was to investigate the effect of increased gait function enhancement exercise in three adolescent convulsive cerebral palsy sinuses on children's large movement function, balance and gait function, self-efficacy, and guardian attitude. Methods : The purpose of this study was to conduct a program to strengthen trunk muscles and strengthen walking ability 5 times a week for 8 weeks in 3 children with convulsive cerebral palsy in adolescence. The main reinforcement of the program was 20 minutes of muscle strength and 20 minutes of walking on a treadmill five times a week. Exercises were focused on the reinforcement of the flexor muscles of the proprioceptive neuromuscular promotion (PNF) and the extension of the legs in the bridge posture exercise and squat movements. Results : The results of GMFM-88 to determine the effects of this functional enhancement program on the body of children with convulsive cerebral palsy, and PBS & TUG to determine the effects of balance and gait ability were improved. In addition, parenting attitudes of guardians, self-efficacy of children, and self-efficacy of parents increased positively due to mental consequences. Conclusion : The results of GMFM-88 to determine the effects of this functional enhancement program on the body of children with convulsive cerebral palsy, and PBS & TUG to determine the effects of balance and gait ability were improved. In addition, parenting attitudes of guardians, self-efficacy of children, and self-efficacy of parents increased positively due to mental consequences.