• Title/Summary/Keyword: travertine

Search Result 4, Processing Time 0.014 seconds

Age Dating and Paleoenvironmental Changes of the Kunang Cave Paleolithic Site

  • Yum, Jong-Kwon;Lee, Yung-Jo;Kim, Jong-Chan;Kim, In-Chul;Kim, Ju-Yong
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.145-148
    • /
    • 2003
  • The Kunang cave paleolithic site is located at Tanyang [$N37^{\circ}2'$, $128^{\circ}21'E$], Chungbuk Province, which is in the Central part of the Korean peninsula. The cave is developed at 312 amsl in a karstic mountainous area. The South Han River flows across this region and other caves can also be found near the river. The site was discovered in 1986 and excavated 3 times by the Chungbuk National University Museum until now. The cave was wellpreserved from modem human activities until the first discovery. The full length of the cave is estimated to be ca. 140 m. However, a spacious part up to 11 m from the entrance has been excavated. Eight lithological units are divided over the vertical profile at a depth of 5 m. Each unit is deposited in ascending order as follow: mud layer (Unit 9), lower complex (Unit 8) which is composed of angular blocks and fragments with a muddy matrix, lower travertine layer (Unit 7; flowstone), middle complex (Unit 6; cultural layer) which is composed of fragments with a muddy matrix, middle travertine layer (Unit 5; flowstone), yellowish muddy layer (Unit 4), upper complex (Unit 3; cultural layer) which has a similar composition to Unit 8. the upper travertine layer (Unit 2; flowstone), and finally surface soil layer (Unit 1). The most abundant vestiges in the cultural layers are the animal bones. They are small fractured pieces and mostly less than 3 cm in length. About 3,800 bone pieces from 25 animal species have been collected so far, 90 percent of them belonging to young deers. Previous archaeological study of these bone pieces shows thatprehistoric people occupied the cavenot for permanent dwelling but for temporary shelter during their seasonal hunting activity. More extensive studies of these bones together with pollen analysis are in progress to reconstruct the paleoenvironment of this cave. Only a single date (12,500 BP) obtained from a U-Th measurement of the upper travertine layer was previously available. In spite of the importance of the cave stratigraphy, there was no detail chronological investigation to establish the depositional process of the cultural layers and to understand the periodic structure of the cave strata, alternating travertine floor and complex layers. We have measured five 14C age dating (38900+/-1000, 36400+/-900, 40600+/-1600, more than 51000 and 52000 14C BP) using Seoul National University 14C AMS facility, conducted systematic process of the collagen extraction from bone fragments samples. From the result, we estimate that sedimentation rate of the cave earth is constant, and that the travertine layers, Unit 2 and Unit 3, was formed during MIS 5a(ca. 80 kBP) and MIS 5c (ca. 100 kBP) respectively. The Kunang Cave site is located at Yochonli of the region of Danyang in the mid-eastern part of Korea. This region is compased of limestones in which many caves were found and the Nam-han river flows meanderingly. The excavations were carried out three times in 1986, 1988, and 1998.

  • PDF

Effect of rock flour type on rheology and strength of self-compacting lightweight concrete

  • Mazloom, Moosa;Homayooni, Seyed Mohammad;Miri, Sayed Mojtaba
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.199-207
    • /
    • 2018
  • With the development of concrete technology, producing concrete products that have the ability to flow under their own weights and do not need internal or external vibrations is an important achievement. In this study, assessments are made on using travertine, marble and limestone rock flours in self-compacting lightweight concrete (SCLC). In fact, the effects of these powders on plastic and hardened phases of SCLC are studied. To address this issue, concrete mixtures with water to cementitious materials ratios of 0.42 and 0.45 were used. These mixtures were made with 0 and 10% silica fume (SF) replacement levels by cement weight. To achieve lightweight concrete, lightweight expanded clay aggregate (Leca) with the bulk density of about $520kg/m^3 $was utilized. Also two kinds of water were consumed involving tap water and magnetic water (MW) for investigating the possible interaction of MW and rock flour type. In this study, 12 mixtures were studied, and their specific weights were in the range of $1660-1692kg/m^3$. To study the mixtures in plastic phase, tests such as slump flow, J-ring, V-funnel and U-box were performed. By using marble and travertine powders instead of limestone flour, the plastic viscosities and rheology were not changed considerably and they remained in the range of regulations. Moreover, SCLC showed better compressive strength with travertine, and then with marble rock flours compared to limestone powders. According to the results of the conducted study, MW showed better performance in both fresh and hardened phases in all the mixes, and there was no interaction between MW and rock flour type.

Carbonate Coatings on Plant Twigs Found from a Travertine-Depositing Small Stream, Dijon, France

  • Lee, Seong-Joo;Kong, Dal-Yong;Golubic, Stjepko
    • Journal of the Korean earth science society
    • /
    • v.35 no.5
    • /
    • pp.305-312
    • /
    • 2014
  • A number of coated grains (spherical to elongated ones in shape) were collected from a small stream, Dijon, France. They were characterized by typical concentric lamination surrounding broken twigs, and were thus identified as concentric precipitation on plant twigs. Within carbonate coatings of the plant twigs, two morphological groups including, eukaryotic green algae (Vaucheria sp.) and cyanobacteria (Scytonema sp. and Rivularia sp.) were detected, which form carbonate crystals that are surrounding their filaments. The filaments could have triggered carbonate precipitation by photosynthetic removal of $CO_2$ causing the increase of alkalinity of the water, and by supporting their sheaths as nucleation sites. Such encrusted twigs were found from 70 meters downstream, in which temperature and pH were measured as $11.1^{\circ}C$ and 8.18, respectively. These water chemistries ($11.1^{\circ}C$ and pH 8.18), with the aid of microbial photosynthesis, were likely to provide a suitable condition for carbonate precipitation on the twigs.

The gene expression programming method for estimating compressive strength of rocks

  • Ibrahim Albaijan;Daria K. Voronkova;Laith R. Flaih;Meshel Q. Alkahtani;Arsalan Mahmoodzadeh;Hawkar Hashim Ibrahim;Adil Hussein Mohammed
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.465-474
    • /
    • 2024
  • Uniaxial compressive strength (UCS) is a critical geomechanical parameter that plays a significant role in the evaluation of rocks. The practice of indirectly estimating said characteristics is widespread due to the challenges associated with obtaining high-quality core samples. The primary aim of this study is to investigate the feasibility of utilizing the gene expression programming (GEP) technique for the purpose of forecasting the UCS for various rock categories, including Schist, Granite, Claystone, Travertine, Sandstone, Slate, Limestone, Marl, and Dolomite, which were sourced from a wide range of quarry sites. The present study utilized a total of 170 datasets, comprising Schmidt hammer (SH), porosity (n), point load index (Is(50)), and P-wave velocity (Vp), as the effective parameters in the model to determine their impact on the UCS. The UCS parameter was computed through the utilization of the GEP model, resulting in the generation of an equation. Subsequently, the efficacy of the GEP model and the resultant equation were assessed using various statistical evaluation metrics to determine their predictive capabilities. The outcomes indicate the prospective capacity of the GEP model and the resultant equation in forecasting the unconfined compressive strength (UCS). The significance of this study lies in its ability to enable geotechnical engineers to make estimations of the UCS of rocks, without the requirement of conducting expensive and time-consuming experimental tests. In particular, a user-friendly program was developed based on the GEP model to enable rapid and very accurate calculation of rock's UCS, doing away with the necessity for costly and time-consuming laboratory experiments.