• Title/Summary/Keyword: traveling wave solutions

Search Result 22, Processing Time 0.017 seconds

Numerical Analysis of Two-Dimensional Nonlinear Radiation Problem Using Higher-Order Boundary Element Method (고차경계요소법을 이용한 2차원 비선형 방사문제의 수치해석)

  • Hong-G. Sung;Hang-S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.1
    • /
    • pp.67-81
    • /
    • 2000
  • An accurate and efficient numerical method for two-dimensional nonlinear radiation problem has been developed. The wave motion due to a moving body is described by the assumption of ideal fluid flow, and the governing Laplace equation can be effectively solved by the higher-order boundary element method with the help of the GMRES (Generalized Minimal RESidual) algorithm. The intersection or corner problem is resolved by utilizing the so-called discontinuous elements. The implicit trapezoidal rule is used in updating solutions at new time steps by considering stability and accuracy. Traveling waves caused by the oscillating body are absorbed downstream by the damping zone technique. It is demonstrated that the present method for time marching and radiation condition works efficiently for nonlinear radiation problem. To avoid the numerical instability enhanced by the local gathering of grid points, the regriding technique is employed so that all the grids on the free surface may be distributed with an equal distance. This makes it possible to reduce time interval and improve numerical stability. Special attention is paid to the local flow around the body during time integration. The nonlinear radiation force is calculated by the "acceleration potential technique". Present results show good agreement with other numerical computations and experiments.

  • PDF

ANALYSES OF ANNULAR LINEAR INDUCTION PUMP CHARACTERISTICS USING A TIME-HARMONIC FINITE DIFFERENCE ANALYSIS

  • Seong, Seung-Hwan;Kim, Seong-O
    • Nuclear Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.213-224
    • /
    • 2008
  • The pumping of coolant in a liquid metal fast reactor may be performed with an annular linear induction electro-magnetic (EM) pump. Linear induction pumps use a traveling magnetic field wave created by poly-phase currents, and the induced currents and their associated magnetic field generate a Lorentz force, whose effect can be the pumping of the liquid metal. The flow behaviors in the pump are very complex, including a time-varying Lorentz force and pressure pulsation, because an induction EM pump has time-varying magnetic fields and the induced convective currents that originate from the flow of the liquid metal. These phenomena lead to an instability problem in the pump arising from the changes of the generated Lorentz forces along the pump's geometry. Therefore, a magneto-hydro-dynamics (MHD) analysis is required for the design and operation of a linear induction EM pump. We have developed a time-harmonic 2-dimensional axisymmetry MHD analysis method based on the Maxwell equations. This paper describes the analysis and numerical method for obtaining solutions for some MHD parameters in an induction EM pump. Experimental test results obtained from an induction EM pump of CLIP-150 at the STC "Sintez," D.V. Efremov Institute of Electro-physical Apparatus in St. Petersburg were used to validate the method. In addition, we investigated some characteristics of a linear induction EM pump, such as the effect of the convective current and the double supply frequency (DSF) pressure pulsation. This simple model overestimated the convective eddy current generated from the sodium flow in the pump channel; however, it had a similar tendency for the measured data of the pump performance through a comparison with the experimental data. Considering its simplicity, it could be a base model for designing an EM pump and for evaluating the MHD flow in an EM pump.