• Title/Summary/Keyword: traveling load

Search Result 63, Processing Time 0.02 seconds

Power Generation Performance Evaluation according to the Vehicle Running on the Hybrid Energy Harvesting Block (하이브리드 에너지하베스팅 블록의 차량주행 발전성능 평가)

  • Kim, Hyo-Jin;Park, Ji-Young;Jin, Kyu-Nam;Noh, Myung-Hyun
    • Land and Housing Review
    • /
    • v.7 no.4
    • /
    • pp.307-314
    • /
    • 2016
  • Energy harvesting technique is to utilize energy that is always present but wasted. In this study, we have developed the energy harvester of the hybrid method utilizing both vibration and pressure of the vehicle traveling a road or parking lot. In the previous study, we have developed a prototype energy harvester, improved hybrid energy harvester, and developed a final product that offers improved performance in the hybrid module. The results were published in the previous paper. In this study, we installed the finally developed hybrid module in the actual parking lot. And we measured the power generation performance due to pressure and vibration, and the running speed of the vehicle when the vehicle is traveling. And we compared the results with those obtained in laboratory conditions. In a previous study performed in laboratory conditions the maximum power of the energy block was 1.066W when one single time of vibration, and 1.830W when succession with 5 times. On the other hand, in this study, we obtained the average power output of 0.310W when the vehicle is running at an average 5 km/h, 0.670W when at an average 10 km/h, and 1.250W when at an average 20 km/h, and 2.160W when at an average 5 km/h. That is, the higher the running speed of the vehicle has increased power generation performance. However, when compared to laboratory conditions, the power generation performance of the energy block in driving speed by 20km/h was lower than those in laboratory conditions. In addition, when compared to one time of vibration of laboratory conditions, power generation performance was higher when the running speed 20km/h or more and when five consecutive times in laboratory conditions, it was higher when the running speed 30km/h or more. It could be caused by a difference of load conditions between the laboratory and the actual vehicle. Thus, applying the energy block on the road would be more effective than that on the parking lot.

Designing the Optimal Urban Distribution Network using GIS : Case of Milk Industry in Ulaanbaatar Mongolia (GIS를 이용한 최적 도심 유통 네트워크 설계 : 몽골 울란바타르 내 우유 산업 사례)

  • Enkhtuya, Daariimaa;Shin, KwangSup
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.159-173
    • /
    • 2019
  • Last-Mile delivery optimization plays a key role in the urban supply chain operation, which is the most expensive and time-consuming and most complicated part of the whole delivery process. The urban consolidation center (UCC) is regarded as a significant asset for supporting customer demand in the last-mile delivery service. It is the key benefit of UCC to improve the load balance of vehicles and to reduce the total traveling distance by finding the better route with the well-organized multi-leg vehicle journey in the urban area. This paper presents the model using multiple scenario analysis integrated with mathematical optimization techniques using Geographic Information System (GIS). The model aims to find the best solution for the distribution network consisted of DC and UCC, which is applied to the case of Ulaanbaatar Mongolia. The proposed methodology integrates two sub-models, location-allocation model and vehicle routing problem. The multiple scenarios devised by selecting locations of UCC are compared considering the general performance and delivery patterns together. It has been adopted to make better decisions the quantitative metrics such as the economic value of capital cost, operating cost, and balance of using available resources. The result of this research may help the manager or public authorities who should design the distribution network for the last mile delivery service optimization using UCC within the urban area.

  • PDF

AERODYNAMIC EFFECT OF ROOF-FAIRING SYSTEM ON A HEAVY-DUTY TRUCK

  • KIM C. H.;YOUN C. B.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.221-227
    • /
    • 2005
  • Aim of this study is to investigate an aerodynamic effect of a drag-reducing device on a heavy-duty truck. The vehicle experiences two different kinds of aerodynamic forces such as drag and uplifting force (or downward force) as it is traveling straight forward at constant speed. The drag force on a vehicle may cause an increase of the rate of fuel consumption and driving instability. The rolling resistance of the vehicle may be increased as result of the negative uplifting or downward force on the vehicle. A device named roof-fairing system has been applied to examine the reduction of aerodynamic drag force on a heavy-duty truck. As for a engineering design information, the drag-reducing system should be studied theoretically and experimentally for the best efficiency of the device. Four different types of roof-fairing model were considered in this study to investigate the aerodynamic effect on a model truck. The drag and downward force generated by vehicle has been obtained from numerical calculation conducted in this study. The forces produced on four fairing models considered in this study has been compared each other to evaluate the best fairing model in terms of aerodynamic performance. The result shows that the roof-fairing mounted truck has bigger negative uplifting or downward force than that of non-mounted truck in all speed ranges, and drag force on roof-fairing mounted truck has smaller than that of non-mounted truck. The drag coefficient $(C_D)$ of the roof-fairing mounted truck (Model-3) is reduced up to $41.3\%$ than that of non-mounted trucks (Model-1). A downward force generated by a roof-fairing mounted on a truck is linearly proportional to the rolling resistance force. Therefore, the negative lifting force on a heavy-duty truck is another important factor in aerodynamic design parameter and should be considered in the design of a drag-reducing device of a tractor-trailer. According to the numerical result obtained from present study, the drag force produced by the model-3 has the smallest of all in all speed ranges and has reasonable downward force. The smaller drag force on model-3 with 2/3h in height may results of smallest thickness of boundary layer generated on the topside of the container and the lowest intensity of turbulent kinetic energy occurs at the rear side of the container.