• Title/Summary/Keyword: travel time information

Search Result 506, Processing Time 0.034 seconds

Drivers' Acceptable levels of the Accuracy of Travel Time Information and Their Valuations (통행시간 정보 정확도에 대한 운전자들의 허용수준과 화폐가치)

  • Yu, Jeong Whon;Choi, Seo Yoon
    • International Journal of Highway Engineering
    • /
    • v.14 no.6
    • /
    • pp.139-148
    • /
    • 2012
  • PURPOSES : The accuracy of travel time information is a key measure of effectiveness and reliability of advanced traveler information systems. This study aims at investigating drivers' perception on the acceptable level of information accuracy and their corresponding valuations. METHODS : A questionnaire survey was executed for collecting driver perception data to capture the expectation level of travel time information provided and their willingness to pay for the information. A Tobit model was adopted for exploring the relationship among the acceptable level, driver socioeconomic characteristics and travel attributes. Since drivers' willingness to pay for accurate travel time information can be different according to their travel lengths, a piecewise linear regression model was developed to capture the sensitivity of values of travel time information to travel length. RESULTS : The analysis results suggest that trip purpose and travel time are two dominant factors to determine drivers' acceptable level of travel time information. For business and short trips, drivers want more accurate information than for non-business and long trips. Drivers' willingness to pay for travel time information also varies depending on their incomes, trip purposes and travel lengths. The results also show that drivers' valuation of travel time information provided is sensitive to their travel length. For longer trips, drivers are less sensitive to travel time information and then put less value on the information provided. CONCLUSIONS : Censored nonlinear regression models are developed to estimate drivers' acceptable accuracy for travel time information and their valuation using questionnaire survey data. The findings on drivers perception to the required accuracy of travel time information and their corresponding willingness to pay can be used in the design and deployment of advanced traveler information system to improve its effectiveness and usefulness through high compliance.

Development of Path Travel Time Distribution Estimation Algorism (경로통행시간 분포비율 추정 알고리즘 개발)

  • Lee, Young-Woo
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.6 s.84
    • /
    • pp.19-30
    • /
    • 2005
  • The objective of this research is to keep track of path travel time using methods of collecting traffic data. Users of traffic information are looking for extensive information on path travel time, which is referred to as the time taken for traveling from the origin to the destination. However, all the information available is the average path travel times, which is a simple sum of the average link travel times. The average path travel time services are not up to the expectation of traffic information consumers. To improve provide more accurate path travel time services, this research makes a number of different estimates of various path travel times on one path, assuming it will be under the same condition, and provides a range of estimates with their probabilities to the consumers, who are looking for detailed information. To estimate the distribution of the path travel times as a combination of link travel times. this research analyzes the relation between the link travel time and path travel time. Based on the result of the estimation. this research develops the algorithm that combines the distribution of link travel time and estimates the path travel time based on the link travel times. This algorithm was tested and proven to be highly reliable for estimating the path traffic time.

Strategy for Providing Optimal VMS Travel Time Information Using Bi-Level Programming (Bi-Level 프로그래밍 기법을 이용한 최적의 VMS 통행시간 정보제공 전략)

  • Baik, Nam Cheol;Kim, Byung Kwan;Lee, Sang Hyup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.559-564
    • /
    • 2006
  • The purpose of this study is to minimize negative effect of VMS travel time information service by sensitivity analysis, which forecasts the change in link traffic volume. As a result, strategies for providing travel information that can change driving patterns for minimizing travel time were found. The framework for analysis is recently expanded with the application of game theory. According to the experiment, the algorithm generated for travel time information service reduces total travel time and yields travel patterns that is very close to the system optimization. Also, this study found that the route the travel time service information is provided about could play the important role.

Long-term Prediction of Bus Travel Time Using Bus Information System Data (BIS 자료를 이용한 중장기 버스 통행시간 예측)

  • LEE, Jooyoung;Gu, Eunmo;KIM, Hyungjoo;JANG, Kitae
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.4
    • /
    • pp.348-359
    • /
    • 2017
  • Recently, various public transportation activation policies are being implemented in order to mitigate traffic congestion in metropolitan areas. Especially in the metropolitan area, the bus information system has been introduced to provide information on the current location of the bus and the estimated arrival time. However, it is difficult to predict the travel time due to repetitive traffic congestion in buses passing through complex urban areas due to repetitive traffic congestion and bus bunching. The previous bus travel time study has difficulties in providing information on route travel time of bus users and information on long-term travel time due to short-term travel time prediction based on the data-driven method. In this study, the path based long-term bus travel time prediction methodology is studied. For this purpose, the training data is composed of 2015 bus travel information and the 2016 data are composed of verification data. We analyze bus travel information and factors affecting bus travel time were classified into departure time, day of week, and weather factors. These factors were used into clusters with similar patterns using self organizing map. Based on the derived clusters, the reference table for bus travel time by day and departure time for sunny and rainy days were constructed. The accuracy of bus travel time derived from this study was verified using the verification data. It is expected that the prediction algorithm of this paper could overcome the limitation of the existing intuitive and empirical approach, and it is possible to improve bus user satisfaction and to establish flexible public transportation policy by improving prediction accuracy.

Real-Time Traffic Information Provision Using Individual Probe and Five-Minute Aggregated Data (개별차량 및 5분 집계 프로브 자료를 이용한 실시간 교통정보 제공)

  • Jang, Jinhwan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.1
    • /
    • pp.56-73
    • /
    • 2019
  • Probe-based systems have been gaining popularity in advanced traveler information systems. However, the high possibility of providing inaccurate travel-time information due to the inherent time-lag phenomenon is still an important issue to be resolved. To mitigate the time-lag problem, different prediction techniques have been applied, but the techniques are generally regarded as less effective for travel times with high variability. For this reason, current 5-min aggregated data have been commonly used for real-time travel-time provision on highways with high travel-time fluctuation. However, the 5-min aggregation interval itself can further increase the time-lags in the real-time travel-time information equivalent to 5 minutes. In this study, a new scheme that uses both individual probe and 5-min aggregated travel times is suggested to provide reliable real-time travel-time information. The scheme utilizes individual probe data under congested conditions and 5-min aggregated data under uncongested conditions, respectively. As a result of an evaluation with field data, the proposed scheme showed the best performance, with a maximum reduction in travel-time error of 18%.

Link Travel Time Estimation Using Uncompleted Link-passing GPS Probe Data in Congested Traffic Condition (혼잡상황에서 링크미통과 GPS 프로브데이터를 활용한 링크통행시간 추정기법 개발)

  • Sim, Sang-U;Choe, Gi-Ju
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.5 s.91
    • /
    • pp.7-18
    • /
    • 2006
  • Data for travel information Provision are regularly aggregated to Provide travel time information in a reliable and convenient manner and to manage traffic data and information efficiently. In most of practices in Korea, the GPS based travel time data are mainly aggregated every 5 minutes As a result, some probes can't pass by a link within aggregation interval and thereby create uncompleted link passing data. But these data are mostly generated during the congested times and therefore a method that uses such uncompleted link passing data are required. This study estimated queue dissipation length, green time and cycle that use GPS spot speed and developed a link travel time estimation method using such uncompleted link passing data. It also presents method and the overall process of using such data to estimate link travel time in a more accurate manner. As a result, MAPE 1.98% and MAE 4.75 sec of link travel time accuracy improvement has been reported, which is not much different from the real link travel time. The method Proposed here would be an alternative to increase the amount of GPS probe data, especially in congested urban arterial case.

Estimation of Bus Travel Time Using Detector for in case of Missed Bus Information (버스정보 결측시 검지기 자료를 통한 버스 통행시간의 산정)

  • Son Young-Tae;Kim Won-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.4 no.3 s.8
    • /
    • pp.51-59
    • /
    • 2005
  • To improve the quality of bus service, providing bus ravel time information to passenger through station screen. Generally, bus travel time information predict by using previous bus data such as neural network, Kalman filtering, and moving average algorithms. However, when they got a difficulty about bus travel time information because of the missing previous bus data, they use pattern data. Generally, nevertheless the difference of range is big. Hence in this research to calculate the bus travel time information when the bus information is missed, use queue detector's data which set up in link. The application of several factors which influence in bus link travel time, we used CORSIM Version 5.1 simulation package.

  • PDF

A Path Travel Time Estimation Study on Expressways using TCS Link Travel Times (TCS 링크통행시간을 이용한 고속도로 경로통행시간 추정)

  • Lee, Hyeon-Seok;Jeon, Gyeong-Su
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.209-221
    • /
    • 2009
  • Travel time estimation under given traffic conditions is important for providing drivers with travel time prediction information. But the present expressway travel time estimation process cannot calculate a reliable travel time. The objective of this study is to estimate the path travel time spent in a through lane between origin tollgates and destination tollgates on an expressway as a prerequisite result to offer reliable prediction information. Useful and abundant toll collection system (TCS) data were used. When estimating the path travel time, the path travel time is estimated combining the link travel time obtained through a preprocessing process. In the case of a lack of TCS data, the TCS travel time for previous intervals is referenced using the linear interpolation method after analyzing the increase pattern for the travel time. When the TCS data are absent over a long-term period, the dynamic travel time using the VDS time space diagram is estimated. The travel time estimated by the model proposed can be validated statistically when compared to the travel time obtained from vehicles traveling the path directly. The results show that the proposed model can be utilized for estimating a reliable travel time for a long-distance path in which there are a variaty of travel times from the same departure time, the intervals are large and the change in the representative travel time is irregular for a short period.

A Travel Time Prediction Model under Incidents (돌발상황하의 교통망 통행시간 예측모형)

  • Jang, Won-Jae
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.1
    • /
    • pp.71-79
    • /
    • 2011
  • Traditionally, a dynamic network model is considered as a tool for solving real-time traffic problems. One of useful and practical ways of using such models is to use it to produce and disseminate forecast travel time information so that the travelers can switch their routes from congested to less-congested or uncongested, which can enhance the performance of the network. This approach seems to be promising when the traffic congestion is severe, especially when sudden incidents happen. A consideration that should be given in implementing this method is that travel time information may affect the future traffic condition itself, creating undesirable side effects such as the over-reaction problem. Furthermore incorrect forecast travel time can make the information unreliable. In this paper, a network-wide travel time prediction model under incidents is developed. The model assumes that all drivers have access to detailed traffic information through personalized in-vehicle devices such as car navigation systems. Drivers are assumed to make their own travel choice based on the travel time information provided. A route-based stochastic variational inequality is formulated, which is used as a basic model for the travel time prediction. A diversion function is introduced to account for the motorists' willingness to divert. An inverse function of the diversion curve is derived to develop a variational inequality formulation for the travel time prediction model. Computational results illustrate the characteristics of the proposed model.