• Title/Summary/Keyword: trapezoidal stiffener

Search Result 7, Processing Time 0.018 seconds

Vibration Analysis of Trapezoidal Corrugated Plates with Stiffeners and Lumped Masses (집중질량을 고려한 보강된 사다리꼴 주름판의 진동해석)

  • Jung, Kang;Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.5
    • /
    • pp.414-420
    • /
    • 2014
  • In this paper, the vibration characteristics of the trapezoidal corrugated plate with axial stiffeners and lumped masses are investigated by the analytical method. The corrugated plate can be treated as an equivalent orthotropic plate as this plate has different flexure properties in two perpendicular directions; flexible in the corrugation direction and stiff in the transverse direction. The effective extensional and flexural stiffness of the equivalent plate are considered to obtain the precise solution in the analysis. The plate is stiffened by concentric stiffeners horizontally to the corrugation direction. The discrete stiffener theory is adopted to consider the position of stiffener. To demonstrate the validity of the proposed approach, the comparison is made with the results of 3D ANSYS finite element solutions. Some numerical results are presented to check the effect of the geometric properties.

Transient Response Analysis of Trapezoidal Corrugated Plates with Stiffeners (보강된 사다리꼴 주름판의 과도 응답 해석)

  • Park, Kyung-Jo;Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.10
    • /
    • pp.788-794
    • /
    • 2014
  • In this paper, the transient response analysis of the trapezoidal corrugated plate subjected to the pulse load is investigated by the theoretical method. Three types of pulse loads are considered: stepped, isosceles triangular and right triangular pulse loads. The corrugated plates can be represented as an orthotropic plate. Both the effective extensional and flexural stiffness of this equivalent orthotropic plate are considered in the analysis. The plate is stiffened by concentric stiffeners perpendicular to the corrugation direction. The stiffening effect is represented by the discrete stiffener theory. This theoretical results are validated by those obtained from 3D finite element analysis based on shell elements. Some numerical results are presented to check the effect of the geometric properties.

Effect of stiffener arrangement on hysteretic behavior of link-to-column connections

  • Zarsav, Saman;Zahrai, Seyed Mehdi;Oskouei, Asghar Vatani
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.1051-1064
    • /
    • 2016
  • Link-to-column connections in Eccentrically Braced Frames (EBFs) have critical role in their safety and seismic performance. Accordingly, in this study, contribution of supplemental stiffeners on hysteretic behavior of the link-to-column connection is investigated. Considered stiffeners are placed on both sides and parallel to the link web between the column face and the first stiffener of the link. Hysteretic behaviors of the link beams with supplemental stiffeners are numerically investigated using a pre-validated numerical model in ANSYS. It turned out that supplemental stiffeners can change energy dissipation mechanism of intermediate links from shear-flexure to shear. Both rectangular and trapezoidal supplemental stiffeners are studied. Moreover, optimal placement of the supplemental stiffeners is also investigated. Obtained results indicate a discrepancy of less than 9% in maximum link shear of the numerical and experimental specimens. This indicates that the numerical results are in good agreement with those obtained from the test. Trapezoidal supplemental stiffeners improve rotational capacity of the link. Moreover, use of two supplemental stiffeners at both ends of the link can more effectively improve hysteretic behavior of intermediate links. Supplemental stiffeners would also alleviate the imposed demands on the connections. This latter feature is more pronounced in the case of two supplemental stiffeners at both ends of the link.

Optimal Design of Panel with Trapezoidal Type Stiffeners (사다리꼴 보강재를 활용한 패널의 최적설계)

  • 이종선
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.71-76
    • /
    • 2003
  • Optimal design of panel with trapezoidal type stiffeners was studied using linear and nonlinear deformation theories. Also analysis method was using closed-form analysis and finite difference energy methods, respectively. Various bucking load factors are obatined for stiffened laminated composite panel with trapezoidal type stiffeners and various aspect ratios, which are made from Carbon/Epoxy USN 125 prepreg and are simply-supported on four edges under uniaxial compression. Optimal design analyses are carried out by the nonlinear search optimizer, ADS.

Shear Buckling Behavior for Trapezoidal Corrugated Webs for Bridges (파형강판 복부의 전단좌굴거동 연구)

  • 이필구;윤태양;이학은;이승록
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.513-520
    • /
    • 2003
  • As a trapezoidal corrugated steel plate has the sufficient stiffness out of plane direction without shear stiffener or thick plate, a use in the web of bridge structure is on the increase. However, there are no domestic design guides for shear buckling strength of corrugated plates. Therefore, foreign design specifications are analyzed about application methods and a numerical parametric study is used to get the relationship of the shear strength and geometric boundary conditions for corrugated plates. Elastic buckling finite element analysis is executed through eigenvalue analysis using the eight nodes five freedoms thin shell element. Parameters such as the width and height of panel and the thickness and height of web, are determined considering the factors to influence on the buckling of corrugated plate. Accuracy of shear buckling analysis is evaluated with theory of foreign buckling equations.

  • PDF

Finite element study the seismic behavior of connection to replace the continuity plates in (NFT/CFT) steel columns

  • Rezaifar, Omid;Younesi, Adel
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.73-91
    • /
    • 2016
  • The use of box columns has been increased due to the rigidity in rigid orthogonal moment resisting frames. On the other hand, the installation and welding of necessary horizontal continuity plates inside the columns are both labor-consuming and costly tasks. Accordingly, in this paper, a new beam-to-box column connection by trapezoidal external stiffeners and horizontal bar mats is presented to provide seismic parameters. The proposed connection consists of eight external stiffeners in the level of beam flanges and five horizontal bar mats in Concrete Filled Tube (CFT) columns. The new connection effectively alleviates the stress concentration and moves the plastic hinge away from the column face by horizontal external stiffeners. In addition, the result shows that proposed connection has provided the required strength and rigidity of connection, so that the increased strength, 8.08% and rigidity, 3.01% are compared to connection with internal continuity plates, also the results indicate that this connection can offer appropriate ductility and energy dissipation capacity for its potential application in moment resisting frames in seismic region. As a result, the proposed connection can be a good alternative for connection with continuity plates.

A Comparative Study of the Double Hull Structures for the Collision Energy Absorption Systems

  • Lee, J.W.;Kim, J.Y.
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.4
    • /
    • pp.19-28
    • /
    • 2001
  • A comparative study of the new flexible double hull structure is presented as a collision energy absorbing system, which is constructed with mixed stringers comprising slant and straight stringers for the double hull tanker, The dimension and disposition of this mixed stringers are selected to give the maximum absorbing energy. From the viewpoint of collision energy absorbing efficiency, this structural system is compared with three other types of the double hull constructions with trapezoidal stiffener, stringer type and standard type of VLCC, 310K DWT, Based on the constant hull weight, the proposed double hull structure with mixed stringers shows a improved crashworthiness as the results.

  • PDF