• Title/Summary/Keyword: trapezoidal corrugated

Search Result 21, Processing Time 0.029 seconds

Static Analysis of Trapezoidal Corrugated Plates under Uniformly Distributed Load (균일 분포하중을 받는 사다리꼴 주름판의 정적 해석)

  • Kim, Young-Wann
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.99-105
    • /
    • 2014
  • In this paper, the static characteristics of the trapezoidal corrugated plate under uniformly distributed pressure are investigated by the analytical method. Because the corrugated plate is very flexible in the corrugation direction and stiff in the transverse direction, the corrugated plate is treated as the orthotropic plate. This equivalent orthotropic plate must include both the extensional and flexural effect to obtain the precise solution. The effective extensional and flexural stiffness of the trapezoidal corrugated plate are derived to consider these effects in the analysis. To demonstrate the validity of the proposed approach, the comparison is made with the previously published results. Some numerical results are presented to check the effect of the geometric properties.

Numerical study on the performance of corrugated steel shear walls

  • Edalati, S.A.;Yadollahi, Y.;Pakar, I.;Emadi, A.;Bayat, M.
    • Wind and Structures
    • /
    • v.19 no.4
    • /
    • pp.405-420
    • /
    • 2014
  • This paper examines the nonlinear behaviour of corrugated steel plate shear walls under lateral pushover load. One of the innovations in these types of walls which have used in recent years is the use of the corrugated steel shear walls rather un-stiffness plates. In the last decades many experimental studies have been done on the on the corrugated steel shear walls. A finite element analysis that includes both material and geometric nonlinearities is employed for the investigation. A comparison is made between the behaviour of steel shear walls with sinusoidal corrugated plate and trapezoidal corrugated plate. The effects of parameters such as the thickness of the corrugated plate, the corrugation depth in the corrugated plates and the corrugation length of the infill of the corrugated plates, are investigated. The results of this study have demonstrated that in the wall with constant dimensions, the trapezoidal plates have higher energy dissipation, ductility and ultimate bearing than sinusoidal waves, while decreasing the steel material consumption.

Transient Response Analysis of Trapezoidal Corrugated Plates with Stiffeners (보강된 사다리꼴 주름판의 과도 응답 해석)

  • Park, Kyung-Jo;Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.10
    • /
    • pp.788-794
    • /
    • 2014
  • In this paper, the transient response analysis of the trapezoidal corrugated plate subjected to the pulse load is investigated by the theoretical method. Three types of pulse loads are considered: stepped, isosceles triangular and right triangular pulse loads. The corrugated plates can be represented as an orthotropic plate. Both the effective extensional and flexural stiffness of this equivalent orthotropic plate are considered in the analysis. The plate is stiffened by concentric stiffeners perpendicular to the corrugation direction. The stiffening effect is represented by the discrete stiffener theory. This theoretical results are validated by those obtained from 3D finite element analysis based on shell elements. Some numerical results are presented to check the effect of the geometric properties.

Influence of trapezoidal and sinusoidal corrugation on the flexural capacity of optimally designed thin-walled beams

  • Erdal, Ferhat;Tunca, Osman;Taylan, Harun;Ozcelik, Ramazan;Sogut, Huseyin
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.63-76
    • /
    • 2022
  • Major engineering requirements and technological developments in the steel construction industry are discussed to support a new innovative system, namely corrugated web beams, for future structural projections. These new-generation steel beams, fabricated as welded plate girders with corrugated webs, are designed to combine large spans with very low weight. In the present study, the flexural capacity of optimally designed trapezoidal and sinusoidal corrugated web beams was aimed at. For this purpose, the new metaheuristic methods, specifically hunting search and firefly algorithms, were used for the minimum weight design of both beams according to the rules of Eurocode EN 1193 15 and DASt-Ri 015. In addition, the strengthening effects of the corrugation geometry at the web posts on the load capacity of fabricated steel beams were tested in a reaction frame. The experimental tests displayed that the lateral capacity of trapezoidal web beams is more durable under flexural loads compared to sinusoidal web beams. These thin-walled beams were also simulated using a 3-D finite element model with plane strain to validate test results and describe the effectiveness of the ABAQUS software.

Shear strength of steel beams with trapezoidal corrugated webs using regression analysis

  • Barakat, Samer;Mansouri, Ahmad Al;Altoubat, Salah
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.757-773
    • /
    • 2015
  • This work attempts to implement multiple regression analysis (MRA) for modeling and predicting the shear buckling strength of a steel beam with corrugated web. It was recognized from theoretical and experimental results that the shear buckling strength of a steel beam with corrugated web is complicated and affected by several parameters. A model that predicts the shear strength of a steel beam with corrugated web with reasonable accuracy was sought. To that end, a total of 93 experimental data points were collected from different sources. Then mathematical models for the key response parameter (shear buckling strength of a steel beam with corrugated web) were established via MRA in terms of different input geometric, loading and materials parameters. Results indicate that, with a minimal processing of data, MRA could accurately predict the shear buckling strength of a steel beam with corrugated web within a 95% confidence interval, having an $R^2$ value of 0.93 and passing the F- and t-tests.

Shear Buckling Behavior for Trapezoidal Corrugated Webs for Bridges (파형강판 복부의 전단좌굴거동 연구)

  • 이필구;윤태양;이학은;이승록
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.513-520
    • /
    • 2003
  • As a trapezoidal corrugated steel plate has the sufficient stiffness out of plane direction without shear stiffener or thick plate, a use in the web of bridge structure is on the increase. However, there are no domestic design guides for shear buckling strength of corrugated plates. Therefore, foreign design specifications are analyzed about application methods and a numerical parametric study is used to get the relationship of the shear strength and geometric boundary conditions for corrugated plates. Elastic buckling finite element analysis is executed through eigenvalue analysis using the eight nodes five freedoms thin shell element. Parameters such as the width and height of panel and the thickness and height of web, are determined considering the factors to influence on the buckling of corrugated plate. Accuracy of shear buckling analysis is evaluated with theory of foreign buckling equations.

  • PDF

Analysis on the Elastic Shear Buckling Characteristics of Corrugated Steel Plate in Accordance with Corrugation Shape (형상에 따른 주름강판의 탄성전단좌굴 특성 및 경향성 분석 연구)

  • Shon, Su-Deok;Yoo, Mi-Na;Lee, Seung-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.11-20
    • /
    • 2014
  • This paper aims at comparing and analyzing shear buckling characteristics between sinusoidal corrugation shape and trapezoidal one. For this, I adopted the equal-length trapezoidal corrugation and sinusoidal one for the analytical models, and analyzed their shear buckling characteristics through linear buckling analysis and on its theory. Generally, the shear buckling shapes of corrugated steel plates are classified into local buckling, global buckling, and interactive buckling from the two buckling modes. Sinusoidal corrugation shape, unlike trapezoidal corrugation, does not have flat sides, which causes another tendency in shear buckling mode. Especially, the changes and different aspects of shear buckling on the boundary between local buckling and global buckling appear in different corrugation shapes. According to the analysis results, interactive buckling mode appeared on the boundary of local buckling and global bucking in trapezoidal corrugation. However, in the case of corrugated steel plates with sinusoidal configuration, interactive buckling mode appeared in the part where global bucking takes place. Besides, trapezoidal shapes are of advantages on shear buckling resistance in the local buckling section, and so are sinusoidal shapes in the global buckling section.

A Comparitive Study on the Shear Buckling Characteristics of Trapezoidal and Sinusoidal Corrugated Steel Plate Considering Initial Imperfection (제형 및 사인형 주름 강판의 초기 불완전 형상을 고려한 전단 좌굴 특성 비교)

  • Seo, Geonho;Shon, Sudeok;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.4
    • /
    • pp.57-64
    • /
    • 2021
  • This paper conducted a comparative analysis of the shear buckling characteristics of trapezoidal and sinusoidal corrugated steel plates considering of their initial imperfection. Initial imperfection refers to the state where the shape of the corrugated plate is initially not perfect. As such, an initially imperfect shape was assumed using the eigen buckling mode. To calculate the buckling stress of corrugated steel plates, the linear buckling analysis used a boundary condition which was applied to the plate buckling analysis. For the comparison of trapezoidal and sinusoidal corrugation, the shape parameters were assumed using the case where the length and slope of each corrugation were the same, and the initial imperfection was considered to be from 0.1% to 5% based on the length of the steel plate. Here, for the buckling analysis, ANSYS, a commercial FEA program, was used. From the results of buckling analysis, the effect of overall initial imperfection showed that the larger the initial imperfection, the lower the buckling stress. However, in the very thin model, interaction or local buckling was dominant in the perfect shape, and in this case, the buckling stress did not decrease. Besides, the sinusoidal model showed higher buckling stress than the trapezoidal one, and the two corrugation shapes decreased in a similar way.

Vibration Analysis of Trapezoidal Corrugated Plates with Stiffeners and Lumped Masses (집중질량을 고려한 보강된 사다리꼴 주름판의 진동해석)

  • Jung, Kang;Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.5
    • /
    • pp.414-420
    • /
    • 2014
  • In this paper, the vibration characteristics of the trapezoidal corrugated plate with axial stiffeners and lumped masses are investigated by the analytical method. The corrugated plate can be treated as an equivalent orthotropic plate as this plate has different flexure properties in two perpendicular directions; flexible in the corrugation direction and stiff in the transverse direction. The effective extensional and flexural stiffness of the equivalent plate are considered to obtain the precise solution in the analysis. The plate is stiffened by concentric stiffeners horizontally to the corrugation direction. The discrete stiffener theory is adopted to consider the position of stiffener. To demonstrate the validity of the proposed approach, the comparison is made with the results of 3D ANSYS finite element solutions. Some numerical results are presented to check the effect of the geometric properties.

Analysis on Exact Rigidity and Free Vibration of Trapezoidal Corrugated Plates (사다리꼴형 주름판의 엄밀강성 및 자유진동 해석)

  • Kim, Young-Wann;Jung, Kang
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.787-794
    • /
    • 2016
  • In this study, the exact rigidity and the free vibration of trapezoidal corrugated plate are analyzed by being based on the Kirchhoff's plate theory and the Ritz method. The previous rigidity of corrugated plate analyzed by considering just a geometric characteristic, a basic assumption and an equivalent idea can cause large errors in practical behaviors. Accordingly, the exact rigidity supplemented by correction factors of the theoretical rigidity is needed. Therefore an analysis on the exact rigidity and the free vibration using the rigidity for the plate is performed in this paper.