• Title/Summary/Keyword: trap door test

Search Result 7, Processing Time 0.017 seconds

Effect of apparent cohesion in unsaturated soils on the ground behavior during underground excavation (불포화토 겉보기 점착력이 지하굴착시 거동에 미치는 영향)

  • Lee, In-Mo;Jung, Jee-Hee;Kim, Kyung-Ryeol;Kim, Do-Hoon;Hyun, Ki-Chang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.2
    • /
    • pp.117-127
    • /
    • 2010
  • Gound excavation is frequently executed in unsaturated soil conditions. In this paper, the effect of apparent cohesion in unsaturated soils on the ground behavior during underground excavation is studied. The VPPE (Volumetric Pressure Plate Extractor) test, the unsaturated triaxial test and the trap-door test were carried out to figure out how the behavior of soils varies depending on the variation of apparent cohesion. The test results show that the ground behavior is almost identical if the soil is either fully dry or fully saturated. However, if the soil is partially-saturated with the increase of water content, the ground behaves quite differently. In summary, the apparent cohesion in unsaturated soils plays key roles when excavating underground structures.

Load-transfer mechanism in the ground with discontinuity planes during tunnel excavation (불연속면이 존재하는 지반에서 터널굴착에 의한 하중전이)

  • Lee, Sang-Duk;Byun, Gwang-Wook;Yoo, Kun-Sun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.1
    • /
    • pp.71-78
    • /
    • 2002
  • In this study, the influence of the presence of discontinuity planes on the load transfer mechanism and the pattern of loosening zone was studied based on the laboratory test. The trap-door and the reaction plates are installed as the bottom plane of the model box. The vertical discontinuity plane is installed in the dry sand. Various overburden heights and locations of discontinuity planes are applied as major factors in this study. The results show that at higher overburden heights over about 1.5 times the excavation width, the ratio of the transferred stress to the insitu stress converges to a certain value even if the overburden height increases further. The results also show that the discontinuity plane gives relatively larger influence on the load transfer mechanism, that produces the unsymmetrical load concentration, when the discontinuity plane locates within the tunnel width. When the discontinuity plane locates outside the tunnel width, the unsymmetrical load concentration is reduced considerably.

  • PDF

Behavior of 2 Arch Tunnel in Sand (사질토지반에서 2 Arch 터널의 거동)

  • Lee, Sang-Duk;Cheon, Eun-Sook
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.2
    • /
    • pp.171-182
    • /
    • 2004
  • This study is focused on finding out the mechanical behavior of pillars and the ground adjacent to the tunnel depending on the central tunnel size and the invert during the construction of 2 arch tunnels in the sandy ground. Model tests were performed in the trap door system, which was composed of 3 separately movable plates. Central pillar was installed on the central movable plate to measure the pillar loads during the excavation of pilot tunnel and the main tunnel. The load-transfer and the loosening load were measured at the bottom plates adjacent to the 2 arch tunnels. The ground settlement and displacement of the tunnel lining were also measured. As results, not only pillar load but also the load transfer mechanism was influenced by the construction sequences, central tunnel size, and the invert.

  • PDF

A Study on Simulation of Cavity and Relaxation Zone Using Laboratory Model Test and Discrete Element Method (실내모형실험과 개별요소법을 이용한 지반 공동 및 이완영역 모사에 관한 연구)

  • Kim, Joo-Bong;You, Seung-Kyong;Han, Jung-Geun;Hong, Gi-Gwon;Park, Jong-Beom
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.11-21
    • /
    • 2017
  • Ground subsidence mainly occurs due to the soil wash-away caused by cracked sewer pipes. It is necessary to understand the behavior surrounding soils with the formation of cavity and relaxation zone to set up counterplan. In this paper, a series of laboratory model tests and numerical analyses (Discrete Element Method) were performed to investigate the ground subsidence mechanism due to sewer pipe damage. For model tests, aluminum rod and trap door were used to simulate the behavior of model ground. Test results were compared with the numerical analyses conducted under the same boundary conditions with model tests. From this study, it was investigated the shape and size of cavity and relaxation zone due to the soil wash-away and a void ratio distribution of surrounding soils with relaxation properties.

Load transfer mechanism due to tunnel excavation in the jointed sandy ground (불연속면을 포함한 사질토 지반에서 터널 굴착에 따른 하중전이)

  • Lee, Sang-Duk;Kim, Yang-Woon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.3
    • /
    • pp.217-226
    • /
    • 2003
  • This study is focused on the finding out load transfer mechanism in the ground near the tunnel during tunnel excavation in the jointed sandy ground. Laboratory model tests were performed on various cases of the overburden heights above tunnel crown, location, and degree of discontinuity planes. For model tests, a movable plate was installed in the midst of the bottom of sandy ground. This plate, moving downwards, was intended to model the stress relaxation during tunnel excavation. The load transfer was measured at the fixed separated bottom plates adjacent to the movable plate. As the result, the loosening zone and the load-transfer form around the tunnelling site were affected by the overburden height and the characteristics of discontinuous planes. And large loosening zone was developed along the discontinuous planes which were close to the tunnel.

  • PDF

Experimental study on the ground arching depending on the deformation type of the crown in the shallow tunnel (얕은터널에서 천단의 변형형태에 따른 그라운드 아칭에 관한 실험적 연구)

  • Yim, Il Jae;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.5
    • /
    • pp.733-747
    • /
    • 2017
  • In the shallow tunnel, the surrounding ground could be loosened and deformed, which could be the cause of stress change in the ground. Terzaghi has clarified the development of a ground arching induced by the deformation of a tunnel crown in the trap door tests. However, he considered only the case in which that the tunnel crown deformed uniformly. He did not consider the effect of deformation shapes. Therefore, the relation between the shape of the ground relaxation above the tunnel crown and the deformation shape of the tunnel crown is not clear yet. In this study, model tests were performed for the three types of the tunnel crown, such as uniform, concave and convex shapes. As results, it was found that the vertical load would be transferred in various types depending on the deformation shapes of the tunnel crown.

Investigation of soil behaviour due to excavation below the grouped pile according to shape of tunnel station (터널 정거장 형상에 따른 군말뚝 하부 굴착 시 지반거동 연구)

  • Kong, Suk-Min;Oh, Dong-Wook;Lee, Jong-Hyen;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.83-97
    • /
    • 2018
  • Tunnels are widely used for special purposes including roads, railways and culvert for power transmission, etc. Its cross-section shape is determined by uses, ground condition, environmental or economic factor. Many papers with respect to behaviours of adjacent ground and existing structure tunnelling-induced have been published by many researchers, but tunnel cross-section have rarely been considered. A collapse of tunnel causes vaster human and property damage than structures on the ground. Thus, it is very important to understand and analyse the relationship between behavoiurs of ground and cross-section type of tunnel. In this study, the behaviour of ground due to tunnel excavation for underground station below the grouped pile supported existing structure was analysed through laboratory model test using a trap-door device. Not only two cross-section types, 2-arch and box, as station for tunnel, but also, offset between tunnel and grouped pile centre (0.1B, 0.25B, 0.4B) are considered as variable of this study. In order to measure underground deformation tunnelling-induced, Close Range Photogrammetry technique was applied with laboratory model test, and results are compared to numerical analysis.