• Title/Summary/Keyword: transverse joint stress

Search Result 39, Processing Time 0.022 seconds

Finite element evaluation of the strength behaviour of high-strength steel column web in transverse compression

  • Coelho, Ana M. Girao;Bijlaard, Frans S.K.
    • Steel and Composite Structures
    • /
    • v.10 no.5
    • /
    • pp.385-414
    • /
    • 2010
  • In current European Standard EN 1993, the moment-rotation characteristics of beam-to-column joints made from steel with a yield stress > 460MPa are obtained from elastic design procedures. The strength of the joint basic components, such as the column web subject to local transverse compression, is thus limited to the yield resistance rather than the plastic resistance. With the recent developments of higher strength steel grades, the need for these restrictions should be revisited. However, as the strength of the steel is increased, the buckling characteristics become more significant and thus instability phenomena may govern the design. This paper summarizes a comprehensive set of finite element parametric studies pertaining to the strength behaviour of high-strength steel unstiffened I-columns in transverse compression. The paper outlines the implementation and validation of a three-dimensional finite element model and presents the relevant numerical test results. The finite element predictions are evaluated against the strength values anticipated by the EN 1993 for conventional steel columns and recommendations are made for revising the specifications.

Performance Evaluation of Inelastic Rotation Capacity of Reinforced Concrete Beam-Column Connections (철근콘크리트 보-기둥 접합부의 비탄성 회전 능력에 대한 성능 평가)

  • Lee, Ki-Hak;Woo, Sung-Woo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.5
    • /
    • pp.1-9
    • /
    • 2007
  • This study summarizes the results of a research project aimed at investigating the inelastic rotation capacity of beam-column connections of reinforced concrete moment frames. A total of 91 test specimens for beam-column joint connections were examined in detail, and 28 specimens were classified as special moment frame connections based on the design and detailing requirements in the ACI 318-02 Provisions. Then the acceptance criteria, originally defined for steel moment frame connections in the AISC-02 Seismic Provisions, were used to evaluate the joint connections of concrete moment frames. Twenty-seven out of 28 test specimens that satisfy the design requirements for special moment frame structures provide sufficient strength and are ductile up to a plastic rotation of 0.03 rad. without any major degradation in strength. Joint shear stress, column-to-beam flexural strength ratio, and transverse reinforcement ratio in a joint all play a key role in good performance of the connections.

Residual Stress and Displacement Analysis of Thick Plate for Partial Penetration Multi-Pass Weldment (후판의 부분용입 다층용접에 대한 잔류음력 및 변형해석)

  • Kim, Seok;Bae, Sung-In;Song, Jung-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1813-1819
    • /
    • 2001
  • Partial penetration welding Joint defines that groove welds without steel backing, welded from on side, and groove weeds welded from both sides but without back gouging, that is. it has an unwelded portion at the root of the weld. In this study we analysed fur residual stress and displacement distribution on partial penetration welding condition of thick plate metal. For 25.4mm thick plate, theoretical residual stress and displacement analysis by finite element method using ABAQUS was carried out and compared with the experimental result using hole-drilling method. In results of the condition of partial penetration, it appeared that longitudinal stress at welding area was a little difference and transverse stress did not have any effect by partial penetration multi-pass welding. From a point of welding distortion in partial penetration multi-pass welding, it seemed to be better to control root face smaller than 6.35mm.

Residual stresses measurement in the butt joint welded metals using FSW and TIG methods

  • Taheri-Behrooz, Fathollah;Aliha, Mohammad R.M.;Maroofi, Mahmood;Hadizadeh, Vahid
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.759-766
    • /
    • 2018
  • Friction Stir Welding (FSW) is a solid-state process, where the objects are joined together without reaching their melting point. It has been shown that this method is a suitable way to join dissimilar aluminium alloys. The current article employed hole drilling technique to measure the residual stress distribution experimentally in different zones of dissimilar aluminium alloys AA6061-T6 and AA7075-T6 Butt welded using FSW. Results are compared with those of similar AA6061-T6 plates joined using a conventional fusion welding method called tungsten inert gas (TIG). Also, the evolution of the residual stresses in the thickness direction was investigated, and it was found that the maximum residual stresses are below the yield strength of the material in the shoulder region. It was also revealed that the longitudinal residual stresses in the joint were much larger than the transverse residual stresses. Meanwhile, Vickers micro hardness measurements were performed in the cross-section of the samples. The largest hardness values were observed in the stir zone (SZ) adjacent to the advancing side whereas low hardness values were measured at the HAZ of both alloys and the SZ adjacent to the retreating side.

A Study on the Behavioral Characteristics of Bellows for Expansion Joints (신축이음용 벨로우즈의 거동특성에 관한 연구)

  • Jeong, Doo-Hyung;Chin, Do-Hun;Kim, Byung-Tak
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.52-58
    • /
    • 2020
  • Bellows are corrugated mechanical elements used to absorb displacements or vibrations caused by temperature changes, pressure, earthquakes, waves, etc., which are welded to flanges or directly connected to pipes. Expansion joint bellows must not only be designed to sufficiently withstand the internal pressure of the pipes but also accommodate axial, transverse, and rotational deformations to minimize the transfer of forces to the sensitive components of the system. Bellows have various types of corrugations, but U-type bellows are most commonly used in general piping systems. In this study, the behavior of U-shaped one-, two-, and three-ply bellows with the same inner diameter under pressure and forced displacement was analyzed using the finite element method. The results were compared with the design formula in the Expansion Joint Manufacturers Association (EJMA)'s code. Manufacturer data were used for the applied pressure and force displacement. The behavioral characteristics of the three cases were compared via structural analysis because the stress levels will be different for each model, even if they have the same inner diameter. Since the analytical model has an axisymmetric shape but displacement occurs in the transverse direction, the finite element model was composed of 1/2 of the whole model, and ANSYS Workbench 17.2 was employed for the analysis.

Analysis of the Fundamental Behaviors of the Middle Slab in a Double-Deck Tunnel for Design Guide Development (복층터널 중간슬래브 설계 기준 마련을 위한 기본 거동 특성 분석)

  • Park, Hee Beom;Cho, Young Kyo;Lee, Young Hoon;Kim, Seong-Min
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.63-72
    • /
    • 2017
  • PURPOSES : The purpose of this study is to investigate the fundamental behaviors such as stresses and deflections of the middle slab in a double-deck tunnel for the development of a middle slab design guide. METHODS : The middle slab has been divided into the following three different sections as according to its structural differences: the normal section, expansion joint section, and emergency passageway section. The normal section of middle slab represents the slab supported by brackets installed continuously along the longitudinal direction of tunnel lining. The expansion joint section refers to a discontinuity of middle slab due to the existence of a transverse expansion joint. The emergency passageway section has an empty rectangular space in the middle slab that acts as an exit in an emergency. The finite element analysis models of these three sections of middle slab have been developed to analyze their respective behaviors. RESULTS : The stresses and deflections of middle slab at the three different sections decrease as the slab thickness increases. The emergency passageway section yields the largest stresses and deflections, with the normal section yielding the smallest. CONCLUSIONS : The stress concentrations at the corners of the passageway rectangular space can be reduced by creating hunch areas at the corners. The stresses and deflections in the emergency passageway section can be significantly decreased by attaching beams under the middle slab in the passageway area.

Nonlinear modeling of beam-column joints in forensic analysis of concrete buildings

  • Nirmala Suwal;Serhan Guner
    • Computers and Concrete
    • /
    • v.31 no.5
    • /
    • pp.419-432
    • /
    • 2023
  • Beam-column joints are a critical component of reinforced concrete frame structures. They are responsible for transferring forces between adjoining beams and columns while limiting story drifts and maintaining structural integrity. During severe loading, beam-column joints deform significantly, affecting, and sometimes governing, the overall response of frame structures. While most failure modes for beam and column elements are commonly considered in plastic-hinge-based global frame analyses, the beam-column joint failure modes, such as concrete shear and reinforcement bond slip, are frequently omitted. One reason for this is the dearth of published guidance on what type of hinges to use, how to derive the joint hinge properties, and where to place these hinges. Many beam-column joint models are available in literature but their adoption by practicing structural engineers has been limited due to their complex nature and lack of practical application tools. The objective of this study is to provide a comparative review of the available beam-column joint models and present a practical joint modeling approach for integration into commonly used global frame analysis software. The presented modeling approach uses rotational spring models and is capable of modeling both interior and exterior joints with or without transverse reinforcement. A spreadsheet tool is also developed to execute the mathematical calculations and derive the shear stress-strain and moment-rotation curves ready for inputting into the global frame analysis. The application of the approach is presented by modeling a beam column joint specimen which was tested experimentally. Important modeling considerations are also presented to assist practitioners in properly modeling beam-column joints in frame analyses.

Experimental and analytical performance evaluation of steel beam to concrete-encased composite column with unsymmetrical steel section joints

  • Xiao, Yunfeng;Zeng, Lei;Cui, Zhenkun;Jin, Siqian;Chen, Yiguang
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.17-29
    • /
    • 2017
  • The seismic performance of steel beam to concrete-encased composite column with unsymmetrical steel section joints is investigated and reported within this paper. Experimental and analytical evaluation were conducted on a total of 8 specimens with T-shaped and L-shaped steel section under lateral cyclic loading and axial compression. The test parameters included concrete strength, stirrup ratio and axial compression ratio. The response of the specimens was presented in terms of their hysterisis loop behavior, stress distribution, joint shear strength, and performance degradation. The experiment indicated good structural behavior and good seismic performance. In addition, a three-dimensional nonlinear finite-element analysis simulating was conducted to simulate their seismic behaviors. The finite-element analysis incorporated both bond-slip relationship and crack interface interaction between steel and concrete. The results were also compared with the test data, and the analytical prediction of joint shear strength was satisfactory for both joints with T-shaped and L-shaped steel section columns. The steel beam to concrete-encased composite column with unsymmetrical steel section joints can develop stable hysteretic response and large energy absorption capacity by providing enough stirrups and decreased spacing of transverse ties in column.

Review of progress in electromechanical properties of REBCO coated conductors for electric device applications

  • Shin, Hyung-Seop;Dedicatoria, Marlon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.7-16
    • /
    • 2014
  • Rare-earth barium copper oxide (REBCO) coated conductor (CC) tapes have already been commercialized but still possess some issues in terms of manufacturing cost, anisotropic in-field performance, $I_c$ response to mechanical loads such as delamination, homogeneity of current transport property, and production length. Development on improving its performance properties to meet the needs in practical device applications is underway and simplification of the tape's architecture and manufacturing process are also being considered to enhance the performance-cost ratio. As compared to low temperature superconductors (LTS), high temperature superconductor (HTS) REBCO CC tapes provide a much wider range of operating temperature and a higher critical current density at 4.2 K making it more attractive in magnet and coil applications. The superior properties of the REBCO CC tapes under magnetic field have led to the development of superconducting magnets capable of producing field way above 23.5 T. In order to achieve its optimum performance, the electromechanical properties under different deformation modes and magnetic field should be evaluated for practical device design. This paper gives an overview of the effects of mechanical stress/strain on $I_c$ in HTS CC tapes due to uniaxial tension, bending deformation, transverse load, and including the electrical performance of a CC tape joint which were performed by our group at ANU in the last decade.

Centrifuge modelling of temporary roadway systems subject to rolling type loading

  • Lees, Andrew S.;Richards, David J.
    • Geomechanics and Engineering
    • /
    • v.3 no.1
    • /
    • pp.45-59
    • /
    • 2011
  • Scaled centrifuge modelling techniques were used to study the soil-structure interactions and performance of a jointed rollable aluminium roadway (or trackway) system on soft clay under light truck tyre loads. The measured performance and subsequent analyses highlighted that the articulated connections significantly reduced the overall longitudinal flexural stiffness of the roadway leading to stress concentrations in the soil below the joints under tyred vehicle loadings. This resulted in rapid localised failure of the supporting soil that in turn led to excessive transverse flexure of the roadway and ultimately plastic deformations. It is shown that the performance of rollable roadway systems under tyred vehicle trafficking will be improved by eliminating joint rotation to increase longitudinal stiffness.