• 제목/요약/키워드: transverse behavior

검색결과 765건 처리시간 0.031초

Study on seismic behavior and seismic design methods in transverse direction of shield tunnels

  • He, Chuan;Koizumi, Atsushi
    • Structural Engineering and Mechanics
    • /
    • 제11권6호
    • /
    • pp.651-662
    • /
    • 2001
  • In order to investigate the seismic behavior and seismic design methods in the transverse direction of a shield tunnel, a series of model shaking table tests and a two-dimensional finite element dynamic analysis on the tests are carried out. Two kinds of static analytical methods based on ground-tunnel composite finite element model and beam-spring element model are proposed, and the validity of the static analyses is verified by model shaking table tests. The investigation concerns the dynamic response behavior of a tunnel and the ground, the interaction between the tunnel and ground, and an evaluation of different seismic design methods. Results of the investigation indicate that the shield tunnel follows the surrounding ground in displacement and dynamic characteristics in the transverse direction; also, the static analytical methods proposed by the authors can be used directly as the seismic design methods in the transverse direction of a shield tunnel.

초고강도 RC 기둥의 이력특성에 관한 실험적 연구 (Hysteric Behavior of Ultra-High Strength RC Columns)

  • 김종근;안종문;한범석;신성우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.31-34
    • /
    • 2005
  • An experimental investigation was conducted to examine the hysteric behavior of Ultra-High strength concrete columns for the requirement of ACI provision. Seven 1/3 scaled columns were fabricated to simulate an 1/2 story of actual structural members with the cross section $300\times300mm$ and the shear span ratio 4. The main variables are axial load ratio, configuration and volumetric ratio of transverse reinforcement. It has been found that the behavior of columns was affected by axial load ratio rather than the amount and the configuration of transverse reinforcement. Consequently, to secure the ductile behavior of 100MPa Ultra-High strength concrete columns, ACI provision for the requirement of transverse steel may considered axial level and the detail of transverse reinforcement.

  • PDF

Experimental study of bubble flow behavior during flow instability under uniform and non-uniform transverse heat distribution

  • Al-Yahia, Omar S.;Yoon, Ho Joon;Jo, Daeseong
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2771-2788
    • /
    • 2020
  • Experiments are conducted to study bubble flow behavior during the instability of subcooled boiling under uniform and non-uniform transverse heating. The non-uniform heat distribution introduces nonuniform bubble generation and condensation rates on the heated surface, which is different from the uniform heating. These bubble generation and condensation characteristics introduce a non-uniform local pressure distribution in the transverse direction, which creates an extra non-uniform pressure on the flowing bubbles. Therefore, different bubble flow behavior can be observed between uniform and non-uniform heating conditions. In the uniform heating, bubble velocity fluctuations are low, and the bubbles travel straight along the axial direction. In the non-uniform heating, more fluctuation in the bubble velocity occurs at low mass flow rate and high subcooled inlet temperatures, and reverse flow is observed. Additionally, the bubbles show a zigzag trajectory when they pass through the channel, which indicates the existence of cross flow in the transverse direction.

유한요소해석을 이용한 연속철근콘크리트 포장의 횡방향 철근 설계 검토 (Review of Transverse Steel Design in Continuously Reinforced Concrete Pavement through Finite Element Analysis)

  • 최판길;하수준;전범준;길용수;원문철
    • 한국도로학회논문집
    • /
    • 제16권2호
    • /
    • pp.25-34
    • /
    • 2014
  • PURPOSES : This paper numerically evaluates the contribution of transverse steel to the structural behavior of continuously reinforced concrete pavements to understand the role of transverse steel. METHODS : Two-lane continuously reinforced concrete pavements with and without transverse steel were analyzed through finite element analysis with the aid of commercial finite element analysis program DIANA; the difference in their structural behavior such as deflection, joint opening, and stress distribution was then evaluated. Twenty-node brick elements and three-node beam elements were used to model concrete and steel, respectively. Sub-layers were modeled with horizontal and vertical tensionless spring elements. The interactions between steel and surrounding concrete were considered by connecting their nodes with three orthogonal spring elements. Both wheel loading and environmental loading in addition to self-weight were considered. RESULTS : The use of transverse steel in continuously reinforced concrete pavements does not have significant effects on the structural behavior. The surface deflections change very little with the use of transverse steel. The joint opening decreases when transverse steel is used but the reduction is quite small. The transverse concrete stress, rather, increases when transverse steel is used due to the restraint exerted by the steel but the increase is quite small as well. CONCLUSIONS : The main role of transverse steel in continuously reinforced concrete pavements is supporting longitudinal steel and/or controlling unexpected longitudinal cracks rather than enhancing the structural capacity.

Characteristic Behavior of High-Strength Concrete Columns under Simulated Seismic Loading

  • Hwang, Sun-Kyoung
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권2E호
    • /
    • pp.79-87
    • /
    • 2006
  • The main objective of this research is to examine the behavior of high-strength concrete(HSC) columns. Eight test columns in one-third scale were tested under the conditions of cyclic lateral force and a constant axial load equal to 30% of the column axial load capacity. The $200{\times}200mm$ square columns were reinforced with eight DB bars constituting a longitudinal steel ratio of 2.54% of the column cross-sectional area. The main experimental parameters were volumetric ratio of transverse reinforcement(${\rho}_s$=1.58, 2.25 percent), tie configuration(Type H, Type C, Type D) and tie yield strength($f_{yh}$=548.8 and 779.1 MPa). It was found that the hysteretic behaviour and ultimate deformability of HSC columns were influenced by the amount and details of transverse reinforcement in the potential plastic hinge regions. Columns of transverse reinforcement in the amount 42 percent higher than that required by seismic provisions of ACI 318-02 showed ductile behavior. At 30% of the axial load capacity, it is recommended that the yield strength of transverse reinforcement be held equal to or below 548.8 MPa. Correlations between the calculated damage index and the damage progress are proposed.

Confinement Effects of High-Strength Reinforced Concrete Tied Columns

  • Han, Byum-Seok;Shin, Sung-Woo
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권2E호
    • /
    • pp.133-142
    • /
    • 2006
  • An experimental study was conducted to investigate the effectiveness of transverse steel in reinforced concrete tied columns subjected to monotonically increasing axial compression. Eighteen large-scale columns($260{\times}260{\times}1,200mm$) were tested. Effects of such main variables as concrete compressive strength, configurations of transverse steel, transverse reinforcement ratio, spacing of transverse steel, and spalling of concrete cover were investigated. High-strength concrete columns under concentric axial loads show extremely brittle behavior unless the columns are confined with transverse steel that can provide sufficiently high lateral confinement pressure. A consistent decrease in the deformability of the column test specimens was observed with increasing concrete strength. Test results of this study were compared with existing confinement models of modified Kent-Park, Sheikh-Uzumeri, Mander, and Saatcioglu-Razvi. The comparison indicates many existing models to predict the behavior of confined concrete overestimate or underestimate the ductility of confined concrete.

Experimental behavior and shear bearing capacity calculation of RC columns with a vertical splitting failure

  • Wang, Peng;Shi, Qing X.;Wang, Qiu W.;Tao, Yi
    • Earthquakes and Structures
    • /
    • 제9권6호
    • /
    • pp.1233-1250
    • /
    • 2015
  • The behavior of reinforced concrete (RC) columns made from high strength materials was investigated experimentally. Six high-strength concrete specimen columns (1:4 scale), which included three with high-strength transverse reinforcing bars and three with normal-strength transverse reinforcement, were tested under double curvature bending load. The effects of yielding strength and ratio of transverse reinforcement on the cracking patterns, hysteretic response, shear strength, ductility, strength reduction, energy dissipation and strain of reinforcement were studied. The test results indicated that all specimens failed in splitting failure, and specimens with high-strength transverse reinforcement exhibited better seismic performance than those with normal-strength transverse reinforcement. It also demonstrated that the strength of high-strength lateral reinforcing bars was fully utilized at the ultimate displacements. Shear strength formula of short concrete columns, which experienced a splitting failure, was proposed based on the Chinese concrete code. To enhance the applicability of the model, it was corroborated with 47 short concrete columns selected from the literature available. The results indicated that, the proposed method can give better predictions of shear strength for short columns that experienced a splitting failure than other shear strength models of ACI 318 and Chinese concrete codes.

혼합법을 이용한 박벽 복합재료 보의 전단변형거동 해석 (Transverse Shear Behavior of Thin-Walled Composite Beams Using a Mixed Method)

  • 박일주;정성남
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.194-197
    • /
    • 2005
  • In this work, a mixed beam approach is performed to identify the transverse shear behavior of thin-walled composite beams with closed cross-sections. The analytical model includes the effects of elastic couplings, shell wall thickness, and torsion warping. The distributions of shear flow across the section as well as the shear correction coefficients are obtained in a closed form in the beam formulation. The influence of transverse shear deformation on the static behavior of closed cross-section composite beams is also investigated in the analysis

  • PDF

두 이동질량이 단순보의 동특성에 미치는 영향 (Influence of Two Moving Masses on Dynamic Behavior of a Simple Beam)

  • 윤한익;최창수;임순홍
    • 동력기계공학회지
    • /
    • 제4권4호
    • /
    • pp.70-77
    • /
    • 2000
  • On the dynamic behavior of a simple beam the influences of the velocities and distance of two moving masses have been studied by numerical method. The instant amplitude of a simple beam is calculated and analyzed for each position of the moving masses represented by the time functions. As increasing the velocties of two moving masses on the simple beam, the amplitude of the transverse vibration of the simple beam is decreased and the frequency of the transverse vibration of the simple beam is increased. As the distance between two moving masses increase, the transverse displacement of the simple beam is decrease. The simple beam is very stable in second mode at $\bar{a}=0.5$ and in third mode at $\bar{a}=0.3$.

  • PDF

Progressive Collapse of Exterior Reinforced Concrete Beam-Column Sub-assemblages: Considering the Effects of a Transverse Frame

  • Rashidian, Omid;Abbasnia, Reza;Ahmadi, Rasool;Nav, Foad Mohajeri
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권4호
    • /
    • pp.479-497
    • /
    • 2016
  • Many experimental studies have evaluated the in-plane behavior of reinforced concrete frames in order to understand mechanisms that resist progressive collapse. The effects of transverse beams, frames and slabs often are neglected due to their probable complexities. In the present study, an experimental and numerical assessment is performed to investigate the effects of transverse beams on the collapse behavior of reinforced concrete frames. Tests were undertaken on a 3/10-scale reinforced concrete sub-assemblage, consisting of a double-span beam and two end columns within the frame plane connected to a transverse frame at the middle joint. The specimen was placed under a monotonic vertical load to simulate the progressive collapse of the frame. Alternative load paths, mechanism of formation and development of cracks and major resistance mechanisms were compared with a two-dimensional scaled specimen without a transverse beam. The results demonstrate a general enhancement in resistance mechanisms with a considerable emphasis on the flexural capacity of the transverse beam. Additionally, the role of the transverse beam in restraining the rotation of the middle joint was evident, which in turn leads to more ductile behavior. A macro-model was also developed to further investigate progressive collapse in three dimensions. Along with the validated numerical model, a parametric study was undertaken to investigate the effects of the removed column location and beam section details on the progressive collapse behavior.