• Title/Summary/Keyword: transportation demand forecasting

Search Result 126, Processing Time 0.022 seconds

Estimation and Application of the Value of Travel Time by Time Period: A Case Study of Downtown Highway Expansion Project (시간대별 통행시간가치 추정 및 적용: 도심부 도로 확장 사업 사례연구를 중심으로)

  • Lee, Jae-Young;Choi, Keechoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1D
    • /
    • pp.7-15
    • /
    • 2011
  • The travel time value is important factor for the evaluation of feasibility the transportation facility investment. The existing method for calculation of the travel time for each mode uses daily average trip purpose. So the value of travel time is constant because it is estimated with only daily average proportion. This daily constant time value can distort the results of future demands of toll roads or economic appraisals for the projects. The proportion of the trip purpose varies by time periods. Accordingly the value of travel time also varies by time periods. In this study, times periods are classified as morning peak, evening peak, business time off-peak, and non-business time off-peak. And trip purpose proportions are sorted by each time period from raw data of Seoul household trip study, then the value of travel time for each time period is estimated with these sorted purpose proportions. A case study of Seoul Jung-gu and Yongsan-gu performed with newly estimated time value by time periods. The result of benefit calculation with the daily constant time value is overestimated approximately annual 2.5 billion Won compared by time values by time periods. The demands of toll roads are also overestimated with the existing daily constant time value by daily 3,500 vehicles and total revenue of toll roads are overestimated by annually 1 billion Won. In conclusion, the value of travel time by each time period enables the more precise economic evaluation of the transportation facility investment projects, mode choice behavior, and route choice behavior especially for toll roads.

A Study of the Proper Sizing of a Subway Station Waiting Area (도시철도 대기공간의 적정규모 산정에 관한 연구)

  • Kim, Jonghwang;Baek, Sungjoon;Nam, Doohee
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.262-269
    • /
    • 2016
  • Subway station scales are determined by peak predictions. In this study, the purpose behind the installation of a subway is public transportation convenience and public interest, but economic validity is also important. By proving that the scale of the station is excessive with regard to the target station size for Seoul subway Line 5-8, a reasonable plan. can be sought. According to station installation standards, the area of the station under investigation here is out of the service levels by six stages (A~F), and it must be four or more levels (D). The Actual level for the B level is a two-step design. The Actual ratio for over- Peak predictions is only 17.8% on average. The results of measurements of the excess area and determination of the excessive costs were analyzed by subdividing the area and by calculating it based on the B level, finding that it is possible to provide benefits for customers only in the current design, with an area ratio of 16.3%. Given the weight, it was estimated that current conditions can meet the needs of only 18.6% of the current area. Simplifying the scale calculation method of the station, it is convenient, safe, and advantageous to move citizens only if the scale can be streamlined. Then, with a reduced initial investment, maintenance costs during the operation can be reduced.

Marginal Effect Analysis of Travel Behavior by Count Data Model (가산자료모형을 기초로 한 통행행태의 한계효과분석)

  • 장태연
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.3
    • /
    • pp.15-22
    • /
    • 2003
  • In general, the linear regression model has been used to estimate trip generation in the travel demand forecasting procedure. However, the model suffers from several methodological limitations. First, trips as a dependent variable with non-negative integer show discrete distribution but the model assumes that the dependent variable is continuously distributed between -$\infty$ and +$\infty$. Second, the model may produce negative estimates. Third, even if estimated trips are within the valid range, the model offers only forecasted trips without discrete probability distribution of them. To overcome these limitations, a poisson model with a assumption of equidispersion has frequently been used to analyze count data such as trip frequencies. However, if the variance of data is greater than the mean. the poisson model tends to underestimate errors, resulting in unreliable estimates. Using overdispersion test, this study proved that the poisson model is not appropriate and by using Vuong test, zero inflated negative binomial model is optimal. Model reliability was checked by likelihood test and the accuracy of model by Theil inequality coefficient as well. Finally, marginal effect of the change of socio-demographic characteristics of households on trips was analyzed.

Development of the Standard Blood Inventory Level Decision Rule in Hospitals (병원의 표준 혈액재고량 산출식 개발)

  • Kim, Byoung-Yik
    • Journal of Preventive Medicine and Public Health
    • /
    • v.21 no.1 s.23
    • /
    • pp.195-206
    • /
    • 1988
  • Two major issues of the blood bank management are quality assurance and inventory control. Recently, in Korea blood donation has gained popularity increasingly to allow considerable improvement of the quality assurance with respect to blood collection, transportation, storage, component preparation skills and hematological tests. Nevertheless the inventory control, the other issue of blood bank management, has been neglected so far. For the supply of blood by donation barely meets the demand, the blood bank policy on the inventory control has been 'the more the better.' The shortage itself by no means unnecessitate inventory control. In fact, in spite of shortage, no small amount of blood is outdated. The efficient blood inventory control makes it possible to economize the blood usage in the practice of state-of-the-art medical care. For the efficient blood inventory control in Korean hospitals, this tudy is to develop formulae forecasting the standard blood inventory level and suggest a set of policies improving the blood inventory control. For this study informations of $A^+$ whole bloods and packed cells inventory control were collected from a University Hospital and the Central Blood Bank of the Korean Red Cross. Using this informations, 1,461 daily blood inventory records were formulated.48 varieties of blood inventory control environment were identified on the basis of selected combinations of 4 inventory control variables-crossmatch, transfusion, inhospital donation and age of bloods from external supply. In order to decide the optimal blood inventory level for each environment, simulation models were designed to calculate the measures of performance of each environment. After the decision of 48 optimal blood inventory levels, stepwise multiple regression analysis was started where the independent variables were 4 inventory control variables and the dependent variable was optimal inventory level of each environment. Finally the standard blood inventory level decision rule was developed using the backward elimination procedure to select the best regression equation. And the effective alternatives of the issuing policy and crossmatch release period were suggested according to the measures of performance under the condition of the standard blood inventory level. The results of this study' were as follows ; 1. The formulae to calculate the standard blood inventory level($S^*$)was $S^*=2.8617X(d)^{0.9342}$ where d is the mean daily crossmatch(demand) for a blood type. 2. The measures of performace - outdate rate, average period of storage, mean age of transfused bloods, and mean daily available inventory level - were improved after maintenance of the standard inventory level in comparison with the present system. 3. Issuing policy of First In-First Out(FIFO) decreased the outdate rate, while Last In-First Out(LIFO) decreased the mean age of transfused bloods. The decrease of the crossmatch release period reduced the outdate rate and the mean age of transfused bloods.

  • PDF

The Utilization Probability Model of Expressway Service Area based on Individual Travel Behaviors Using Vehicle Trajectory Data (차량궤적자료를 활용한 통행행태 기반 고속도로 휴게소 이용 확률 모형 개발)

  • Bang, DaeHwan;Lee, YoungIhn;Chang, HyunHo;Han, DongHee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.4
    • /
    • pp.63-75
    • /
    • 2018
  • A Service Area plays an important role in preventing accidents in advance by creating a space for long distance drivers or drowsy drivers to rest. Therefore, proper positioning of the expressway service area is essential, and it is important to analyze accurate demand forecasting and user travel behavior. Thus, this study analysis travel behavior and developed odel of the probability of using the service area by using the DSRC data collected by the RSE on the highway. According to the analysis, the usage behavior of highway service areas was most frequently when travel time was 90 minutes or more on weekdays and 70 minutes or more on weekends. The utilization rate of the service area estimated from the probability model of use of the rest area in this study was 1 % to 2 % error. The results of this study are meaningful in analyzing the behavior of the use of rest areas using the structured data and can be used as a differentiated strategy for selecting the location of rest areas and enhancing the service level of users.

DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA (한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발)

  • 박만배
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF