• Title/Summary/Keyword: transport phenomena

Search Result 406, Processing Time 0.028 seconds

Detection and Manipulation of Spin state of Single Molecule Magnet: Kondo resonance and ESR-STM

  • Komeda, T.;Isshiki, H.;Zhang, Y.F.;Katoh, K.;Yoshida, Y.;Yamashita, M.;Miyasaka, H.;Breedlove, B.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.16-17
    • /
    • 2010
  • Molecular spintronics has attracted attentions, which combines molecular electronics with the spin degree of freedom in electron transport. Among various molecules as candidates of the molecular spintronics, single molecule magnet (SMM) is one of the most promising material. SMM molecules show a ferromagnetic behavior even as a single molecule and hold the spin information even after the magnetic field is turned off. Here in this report, we show the spin behavior of SMM molecules adsorbed on the Au surface by combining the observation of Kondo peak in the STS and ESR-STM measurement. Kondo resonance state is formed near the Fermi level when degenerated spin state interacts with conduction electrons. ESR-STM detects the Larmor frequency of the spin in the presence of a magnet field. The sample include $MPc_2$ and $M_2Pc_3$ molecules ($M\;=\;Tb^{3+}$, $Dy^{3+}$, and $Y^{3+}$ Pc=phthalocyanine) whose critical temperature as a ferromagnet reaches 40 K. A clear Kondo peak was observed which is originated from an unpaired electron in the ligand of the molecule, which is the first demonstration of the Kondo peak originated from electron observed in the STS measurement. We also observed corresponding peaks in ESR-STM spectra. [1] In addition we found that the Kondo peak intensity shows a clear variation with the conformational change of the molecule; namely the azimuthal rotational angle of the Pc planes. This indicates that the Kondo resonance is correlated with the molecule electronic state. We examined this phenomena by using STM manipulation technique, where pulse bias application can rotate the relative azimuthal angle of the Pc planes. The result indicates that an application of ~1V pulse to the bias voltage can rotate the Pc plane and the Kondo peaks shows a clear variation in intensity by the molecule's conformational change.

  • PDF

A Note on the Geostrophic Velocity Estimation from a AVHRR Image and its Application (AVHRR 자료를 이용한 지형류의 추정과 그 적용)

  • 이태신;정종률;오임상
    • Korean Journal of Remote Sensing
    • /
    • v.9 no.1
    • /
    • pp.79-93
    • /
    • 1993
  • The relative geostrophic velocity is estimated by using the MCSST(Multi-Channel Sea Surface Temperature) from a NOAA/AVHRR image and applied to the Korea Strait. Remote sensing technique can play a useful role to research for oceanic phenomena because of its synoptic, simultaneous and repetitive viewing. The high resolution data of AVHRR can determine the geostrophic flow more precisely than the hydrographic data on shipboard. As a result of research, the relative geostrophic velocity in the weatern channel of the Korea Strait is the strongest in the trough area and its maximum speed is about 23.8cm/sec in April, 1992. But this results include the error due to neglecting the effect of salinity in estimation the geopotential anomaly. The geostrophic volume transport through the western channel of the Korea Strait is the largest between trough area and the Tsushima Island.

Development of a New Munk-type Breaker Height Formula Using Machine Learning (머신러닝을 이용한 새로운 Munk-type 쇄파파고 예측식의 제안)

  • Choi, Byung-Jong;Nam, Hyung-Sik;Lee, Kwang-Ho
    • Journal of Navigation and Port Research
    • /
    • v.45 no.3
    • /
    • pp.165-172
    • /
    • 2021
  • Breaking wave is one of the important design factors in the design of coastal and port structures as they are directly related to various physical phenomena occurring on the coast, such as onshore currents, sediment transport, shock wave pressure, and energy dissipation. Due to the inherent complexity of the breaking wave, many empirical formulas have been proposed to predict breaker indices such as wave breaking height and breaking depth using hydraulic models. However, the existing empirical equations for breaker indices mainly were proposed via statistical analysis of experimental data under the assumption of a specific equation. In this study, a new Munk-type empirical equation was proposed to predict the height of breaking waves based on a representative linear supervised machine learning technique with high predictive performance in various research fields related to regression or classification challenges. Although the newly proposed breaker height formula was a simple polynomial equation, its predictive performance was comparable to that of the currently available empirical formula.

Two-dimensional numerical experiment considering cohort size and wood jam characteristic on driftwood (유목의 유입규모와 군집특성을 고려하는 2차원 수치모의 실험)

  • Kang, Taeun;Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.6
    • /
    • pp.407-418
    • /
    • 2021
  • In this study, the two-dimensional flow model, Nays2DH, and driftwood dynamics model were combined to analyze the flow and driftwood behavior depending on the characteristics of the inflow of driftwood and the length of the driftwood stem. In particular, the Dashpot-spring model was added to the driftwood dynamics model to simulate the collision motion of the driftwood, and the wood jam characteristics by the collision of the driftwood were compared. As a result of the simulation, the pass rate of the obstacle section, the travel distance of wood jam, and the mean position of the wood pieces were respondent sensitively by the length of the driftwood stem, but the cohort size of the driftwood supply was insignificant excepting for the pass rate. Through this study, we could understand the interaction between hydraulic structures and driftwood, and through this, it is believed that it will be helpful in establishing a durable maintenance plan for hydraulic structures by predicting the transport and jam formation phenomena of driftwood in advance.

Investigation of Drop Test Method for Simulation of Low Gravity Environment (저중력 환경 모사를 위한 낙하 시험 방법 연구)

  • Baek, Seungwhan;Yu, Isang;Shin, Jaehyun;Park, Kwangkun;Jung, Youngsuk;Cho, Kiejoo;Oh, Seunghyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.78-87
    • /
    • 2021
  • Understanding the liquid propellant transport phenomena in low gravity is essential for developing Korea Space Launch Vehicle (KSLV) upper-stage for the diversity of space missions. A low-gravity environment can be simulated via the free-fall method on the ground; however, the air drag is inevitable. To reduce air resistance during free fall, air-drag shield is usually adopted. In this study, the free-fall method was performed with an air-drag shield from a 7-m height tower. The acceleration of a falling object was measured and analyzed. Low gravity below 0.01 g was achieved during 1.2-s free fall with the air-drag shield. The minimum gravitational acceleration value at 1.2-s after free fall was ±0.005 g, which is comparable to the value obtained from Bremen drop tower experiments, ±0.002 g. A prolonged free-fall duration may enhance the low-gravity quality during the drop tower experiments.

Analysis on the Pyrolysis Characteristics of Waste Plastics Using Plug Flow Reactor Model (Plug Flow Reactor 모델을 이용한 폐플라스틱의 열분해 특성 해석)

  • Sangkyu, Choi;Yeonseok, Choi;Yeonwoo, Jeong;Soyoung, Han;Quynh Van, Nguyen
    • New & Renewable Energy
    • /
    • v.18 no.4
    • /
    • pp.12-21
    • /
    • 2022
  • The pyrolysis characteristics of high-density polyethylene (HDPE), low-density polyethylene (LDPE), and polypropylene (PP) were analyzed numerically using a 1D plug flow reactor (PFR) model. A lumped kinetic model was selected to simplify the pyrolysis products as wax, oil, and gas. The simulation was performed in the 400-600℃ range, and the plastic pyrolysis and product generation characteristics with respect to time were compared at various temperatures. It was found that plastic pyrolysis accelerates rapidly as the temperature rises. The amounts of the pyrolysis products wax and oil increase and then decrease with time, whereas the amount of gas produced increases continuously. In LDPE pyrolysis, the pyrolysis time was longer than that observed for other plastics at a specified temperature, and the amount of wax generated was the greatest. The maximum mass fraction of oil was obtained in the order of HDPE, PP, and LDPE at a specified temperature, and it decreased with temperature. Although the 1D model adopted in this study has a limitation in that it does not include material transport and heat transfer phenomena, the qualitative results presented herein could provide base data regarding various types of plastic pyrolysis to predict the product characteristics. These results can in turn be used when designing pyrolysis reactors.

Modeling of a Dynamic Membrane Filtration Process Using ANN and SVM to Predict the Permeate Flux (ANN 및 SVM을 사용하여 투과 유량을 예측하는 동적 막 여과 공정 모델링)

  • Soufyane Ladeg;Mohamed Moussaoui;Maamar Laidi;Nadji Moulai-Mostefa
    • Membrane Journal
    • /
    • v.33 no.1
    • /
    • pp.34-45
    • /
    • 2023
  • Two computational intelligence techniques namely artificial neural networks (ANN) and support vector machine (SVM) are employed to model the permeate flux based on seven input variables including time, transmembrane pressure, rotating velocity, the pore diameter of the membrane, dynamic viscosity, concentration and density of the feed fluid. The best-fit model was selected through the trial-error method and the two statistical parameters including the coefficient of determination (R2) and the average absolute relative deviation (AARD) between the experimental and predicted data. The obtained results reveal that the optimized ANN model can predict the permeate flux with R2 = 0.999 and AARD% = 2.245 versus the SVM model with R2 = 0.996 and AARD% = 4.09. Thus, the ANN model is found to predict the permeate flux with high accuracy in comparison to the SVM approach.

Dynamic analysis of nanotube-based nanodevices for drug delivery in sports-induced varied conditions applying the modified theories

  • Shaopeng Song;Tao Zhang;Zhiewn Zhui
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.487-502
    • /
    • 2023
  • In the realm of nanotechnology, the nonlocal strain gradient theory takes center stage as it scrutinizes the behavior of spinning cantilever nanobeams and nanotubes, pivotal components supporting various mechanical movements in sport structures. The dynamics of these structures have sparked debates within the scientific community, with some contending that nonlocal cantilever models fail to predict dynamic softening, while others propose that they can indeed exhibit stiffness softening characteristics. To address these disparities, this paper investigates the dynamic response of a nonlocal cantilever cylindrical beam under the influence of external discontinuous dynamic loads. The study employs four distinct models: the Euler-Bernoulli beam model, Timoshenko beam model, higher-order beam model, and a novel higher-order tube model. These models account for the effects of functionally graded materials (FGMs) in the radial tube direction, giving rise to nanotubes with varying properties. The Hamilton principle is employed to formulate the governing differential equations and precise boundary conditions. These equations are subsequently solved using the generalized differential quadrature element technique (GDQEM). This research not only advances our understanding of the dynamic behavior of nanotubes but also reveals the intriguing phenomena of both hardening and softening in the nonlocal parameter within cantilever nanostructures. Moreover, the findings hold promise for practical applications, including drug delivery, where the controlled vibrations of nanotubes can enhance the precision and efficiency of medication transport within the human body. By exploring the multifaceted characteristics of nanotubes, this study not only contributes to the design and manufacturing of rotating nanostructures but also offers insights into their potential role in revolutionizing drug delivery systems.

Relationships of Physiological Activity and Anatomical Structure to the Wilting Phenomena in Rice Plant 2. Relationships between the anatomical structure and wilting phenomena of rice variety "Yushin" (수도품종의 위조현상과 생리 및 형태해부학적 구조와의 관련성에 관한 연구 제2보 유신벼의 위조현상발생과 형태해부학적 구조와의 관계)

  • Jong-Hoon Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.25 no.2
    • /
    • pp.6-14
    • /
    • 1980
  • One of the physiological disease, sudden wiliting of Yushin variety suggested that low sunlight, excessive nitrogen application, and highly reduced soil condions either singly or combined, might be possible causes of the disorder. Some visual symptom of sudden wilting are discoloration of leaves, development of nodal roots above the soil surface, total root rot, and lodging. Those observations led to the hypothesis that suffocation of root tissues was a direct cause of the wilting. The oxygen transport characteristics of Yushin, IR262 and Tongil were examined by two methods. First, Soil-cultured plants of the three varieties were subjected to paraffin treatment to decrease the oxygen supply from the air to root tissues through the soil-water system, liquid paraffin was applied to the water surface in the pots at panicle formation stage. In this experiment, sudden wilting was observed of Yushin and IR262 at about a week after the treatment, but Tongil remained green and healthy. Wilting-resistant variety Tongil had higher oxygen release, whereas the susceptible Yushin and IR262 had lower oxygen release. Second, the number and size of the air spaces in each internode were investigated in the 5th internode from the top, all three varieties have a similar number of air spaces, although the air spaces of Thongil were larger. In the 4th internode, Tongil had plenty air spaces, Yushin and one of the Yushin's parents IR262 had scanty or none. The observations indicated that the ability of Yushin and IR262 for oxygen transport is very limited compared with that of Tongil. The limited oxygen supply due to poor development of air space in internode of rice plants may cause suffocation of root tissues, weaken metabolic activity of the tissues, and induce root rot, subsequently inducing sudden wilting and lodging under unfavorable weather, soil and cultural conditions.

  • PDF

The Nopsae;a Foehn type wind over the Young Suh region of central Korea (영서지방의 푄현상)

  • ;Lee, Hyon-Young
    • Journal of the Korean Geographical Society
    • /
    • v.29 no.3
    • /
    • pp.266-280
    • /
    • 1994
  • Upper-air synoptic data and surface weather elements such as temperature, relative humidity, wind speed, cloud and precipitation were analyzed in some detail to determine the characteristics of Nopsae, a foehn-like surface wind over the Youngsuh region of Central Korea. NOAA AVHRR and GMS images are also referenced to identify the distribution of clouds and precipitation to classify the tpyes of foehn over the study area. The data period examined is from 1982 until 1993 of spring and summer months from March through August. Results of the anaylsis are as follows. Warm and dry air penetration over the Younesuh region has experienced on foehn days occured between March 21 and August 10 during study perion. The mean annual number of foehn the days were 28. Foehn phenomena were prominent during March 21-25, April 5-15, May 25-June 10, and June 26-30 pentads. The intensity of the phenomena can be evaluated as the difference of daily maximum temperature and relative humidity between windward sites and leeward sites. The intensity of daily maximum temperature reached 14.5$^{\circ}C$, but most values were in the range of 5.0-7.5$^{\circ}C$ (61%). Although strong intensity of foehns usually develop in June, it is common that farmers in the region experince more aridity during the foehnday of April and May due to the transplantation of rice seedlings. Long-run foehn are not common phenomena and 55% of foehn terminate in one day, but there is a record that Nopsae persisted up to 9 days continuously. The author identified using the cloud and precipitation data out of NOAA-11, AVHRR and GMS images is that one of them has no precipitation over windward side. The available data and the results of the analysis are somewhat inadequate. Since the results imply that wave phenomenon is potentially important in terms of local surface weather and vertical momentum transport, more detailed theoretical and observational studies are necessary to clarify the mechanism and the impacts of Nopsae.

  • PDF