• Title/Summary/Keyword: transport coefficients

Search Result 350, Processing Time 0.253 seconds

A Simulation of the Energy Distribution Function for Electron in $CF_4$-Ar Mixtures Gas ($CF_4$ 혼합기체(混合氣體)에서 전자(電子)에너지분포함수)

  • Kim, Sang-Nam;Seong, Nak-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2004.07e
    • /
    • pp.37-40
    • /
    • 2004
  • Electron swarm parameters in pure $CF_4$ and mixtures of $CF_4$ and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation(BEq.) method and the Monte Carlo simulation(MCS) The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4$-Ar mixtures shows the Maxwellian distribution for energy. That is, f(${\varepsilon}$) has the symmetrical shape whose axis of symmetry is a most probably energy

  • PDF

A Study on the Cooling Performance of Cutting Oil of Inclined Thermosyphon (경사 열사이폰의 절삭유 냉각성능에 관한 연구)

  • 이정한;이기백;조동현;이종선
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.38-44
    • /
    • 2002
  • An experimental investigation was performed to observe the cooling performance of cutting oil and the effect of inclination angle on the transport behaviour of a inclined thermosyphons with low integral-fins. Relatively high rates of heat transfer have been achieved by operating this manner. Water has been used as the working fluid. The inclimation angle of thermoryphon and the ratio of Reynolds number of cooling to hot fluid have been used as the experimental parameters. Heat transfer coefficients at the condenser and the evaporator are estimated from experimental results. The experimental results have been assessed and compared with existing theory. Good agreement with the theory of Yiwei has been found. The maximum heat flow rate in the thermosyphon proved to depend upon the inclination angle.

Development of a New Correlation for the Heat Transfer Coefficient of Turbulent Supercritical Carbon Dioxide Flow (초임계 상태 이산화탄소 난류유동의 새로운 열전달계수 상관식 개발)

  • 임홍영;최영돈;김용찬;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.4
    • /
    • pp.274-286
    • /
    • 2003
  • Numerical simulations are performed to investigate the turbulent convective heat transfer of the supercritical carbon dioxide flows in vertical and horizontal square ducts. The gas cooling process at the supercritical state experiences a sudden change in thermodynamic and transport properties. This results in the extraordinary variations of the heat transfer coefficients in the supercritical state, which are much different from those of single or two phase flows. Algebraic second moment closure which can include the effects of large thermophysical property variations of carbon dioxide and of buoyancy is employed to model the Reynolds stresses and turbulent heat fluxes in the governing equations. The previous correlations for the turbulent heat transfer coefficient for the supercritical carbon dioxide flows couldn't reflect the buoyancy effect. The present results are used to establish a new heat transfer coefficient correlation including the effects of large thermophysical property variation and buoyancy on in-duct cooling process of supercritical carbon dioxide.

FAST REACTOR PHYSICS AND COMPUTATIONAL METHODS

  • Yang, W.S.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.2
    • /
    • pp.177-198
    • /
    • 2012
  • This paper reviews the fast reactor physics and computational methods. The basic reactor physics specific to fast spectrum reactors are briefly reviewed, focused on fissile material breeding and actinide burning. Design implications and reactivity feedback characteristics are compared between breeder and burner reactors. Some discussions are given to the distinct nuclear characteristics of fast reactors that make the assumptions employed in traditional LWR analysis methods not applicable. Reactor physics analysis codes used for the modeling of fast reactor designs in the U.S. are reviewed. This review covers cross-section generation capabilities, whole-core deterministic (diffusion and transport) and Monte Carlo calculation tools, depletion and fuel cycle analysis codes, perturbation theory codes for reactivity coefficient calculation and cross section sensitivity analysis, and uncertainty analysis codes.

A study on the improvement of sound absorption coefficient of an honeycomb panel by the core resonance (코어공명을 이용한 허니콤패널의 흡음율 개선에 관한 연구)

  • Yu, Y.H.
    • Journal of Power System Engineering
    • /
    • v.12 no.4
    • /
    • pp.46-51
    • /
    • 2008
  • Honeycomb panel has a constructive advantage because it is constructed with a honeycomb core, so it has relatively higher strength ratio to weight. Therefore honeycomb panel has been used as the light weight panels in the high-speed railway technology and high-speed ship like as cruise yachts. Also it has been used in the aircraft and aerospace industry as a structural panel because light weight structure is indispensible in that field of industry. Recently, the honeycomb panel is embossed in the viewpoints of high oil prices as the lightweight panel of the transport machine, however the sound insulation capacity of the honeycomb panel is poorer than those of uniform and another sandwich panels. In this paper a method to improving the sound absorption coefficient of a honeycomb panel Is studied by using the Helmholtz resonator. The sound absorption coefficients for some kinds of honeycomb cores are demonstrated by the normal incident absorption coefficient method.

  • PDF

Re-determination of inelastic collision cross sections for $C_{3}F_{8}$ molecular gas in $C_{3}F_{8}-Ar$ mixture gases ($C_{3}F_{8}-Ar$혼합가스 상에서 $C_{3}F_{8}$분자가스의 비탄성단면적의 재결정)

  • Jeon, Byoung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.21-23
    • /
    • 2005
  • The electron transport coefficients, the electron drift velocity W, the longitudinal diffusion coefficient $ND_L$ in $C_{3}F_{8}-Ar$ mixture gases were measured by Double shutter drift tube and calculated by multi-term approximation of the Boltzmann equation over the wide E/N range from 0.03 to 100 Td. And an inelastic collision cross sections for $C_{3}F_{8}$ molecular gas were redetermined for quantitative characteristic analysis.

  • PDF

A Simulation of the Energy Distribution Function for Electron in Gas Mixtures (시뮬레이션을 이용한 혼합기체(混合氣體)에서 전자(電子)에너지분포함수)

  • Kim, Sang-Nam;Yu, Heoi-Young;Ha, Sung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.194-198
    • /
    • 2002
  • Energy Distribution Function in pure $CH_4$, $CF_4$ and mixtures of $CF_4$ and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-tenn approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4-Ar$ mixtures shows the Maxwellian distribution for energy. That is, f(${\varepsilon}$) has the symmetrical shape whose axis of symmetry is a most probably energy

  • PDF

The study of electron collision cross sections and electron transport coefficients in gases (전자충돌단면적과 전자수송계수에 관한 연구)

  • Jeon, Byung-Hoon;Park, Jae-Jun;Ha, Sung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.11-14
    • /
    • 2002
  • Accurate sets of electron collision cross sections for atoms and molecules are necessary for quantitative understanding and modeling of plasma phenomena. So, in this study, we explains the concept of electron collision cross sections for gases, and the principle of determination of the electron collision cross sections for atoms and molecules by using the present electron swarm method.

  • PDF

A study of the Insulation Characteristic in $SF_6-N_2$ Mixture Gases ($SF_6-N_2$ 혼합기체의 절연특성에 관한 연구)

  • Ha, Sung-Chul;Song, Byoung-Doo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.613-616
    • /
    • 2001
  • This SF6 gas is widely used in industrial of insulation field. In this paper, N2 is mixed to improve pure SF6 gas characteristics. Electron transport coefficients in SF6-N2 mixture gases are simulated in range of E/N values from 70 to 400 [Td] at 300K and 1 Torr by using Boltzmann equation method. The results of this method, which are like electron drift velocity, ionization coefficient, attachment coefficient, effective ionization coefficient, and critical EIN, can be important data to present characteristic of gas for insulation. Specially critical E/N is a data to evaluate insulation strength of a gas and is presented in this paper for various mixture ratios of SF6-N2 mixture gases.?⨀␍?܀㘱〮㜳㬓M敤楣楮攠慮搠桥污瑨

  • PDF

Electron Swarm Parameter Characteristic in $SiH_4$ Plasma by TOF Method (TOF법을 이용한 $SiH_4$ 프라즈마중의 전자군파라미터특성)

  • Lee, Hyung-Yoon;Ha, Sung-Chul;Yu, Heoi-Young;Kim, Sang-Nam;Lim, Sang-Won;Moon, Ki-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1830-1833
    • /
    • 1997
  • This paper describes the electron transport characteristic in $SiH_4$ gas calculated for range of E/N values from $0.5{\sim}300$(Td) using a set of electron collision cross sections determined by the authors and the values of electron swarm parameters are obtained for TOF method. The results gained that the value of an electron swarm parameter such as the electron drift velocity, longitudinal and transverse diffusion coefficients with the experimental and theoretical for a range of E/N. The electron energy distributions function were analysed in monosilane at E/N : 30, 50(Td) for a case of equilibrium region in the mean electron energy. The validity of the results obtained has been confirmed by a TOF method.

  • PDF