• Title/Summary/Keyword: transpiration.

Search Result 394, Processing Time 0.04 seconds

Effects of Light, Temperature, Water Changes on Physiological Responses of Kalopanax pictus Leaves (VII) - Daily Changes of Stomatal Transpiration, Water Use Efficiency, and Intercellular (Ci) CO2 Concentration versus Atmosphere CO2 Concentration (Ca) Ratio (Ci /Ca) - (광, 온도, 수분 변화에 따른 음나무 엽의 생리반응(VII) - 기공증산, 수분이용효율, 그리고 엽육세포간극 CO2 농도의 일변화 -)

  • Han, Sang-Sup;Jeon, Doo-Sik;Sim, Joo-Suk;Jeon, Seong-Ryeol
    • Journal of Forest and Environmental Science
    • /
    • v.23 no.1
    • /
    • pp.29-33
    • /
    • 2007
  • This study was purposed to elucidate the best optimum sites by ecophysiological response measurements of Kalopanax pictus samplings of plantation. The diurnal changes of the stomatal transpiration, water use efficiency, water potential, and intercellullar $CO_2$ concentration of leaves were measured by the portable IR $CO_2$ analyzer. The results obtained are summarized as follows. 1) The daily stomatal transpiration rate was highest at 10:00 a.m. After 16:00, the stomatal transpiration rate rapidly decreased. 2) The daily water use efficiency was maximum at 8:00 a.m., and then rapidly decreased until midday with decreasing water potential. 3) The daily $C_i/C_a$ ratio rapidly decreased until 9:00 a.m., and then showed a stable value until 16:00, and then rapidly increased. The daily intercellullar $CO_2$ concentration ($C_i/C_a$ ratio) showed the same tendency as water potential changes. Consequently, stomatal transpiration and water use efficiency was increased with high water potential of leaves at am, and then remarkably decreased with low water potential at pm.

  • PDF

The Salt Accumulation Model on the Soil Surface by Evaporation, Transpiration and Rainfall

  • Chang, Nam-Kee;Kim, Ju-Hoon
    • The Korean Journal of Ecology
    • /
    • v.2 no.1
    • /
    • pp.31-37
    • /
    • 1978
  • The salt accumulation on the soil surface can be mathematically described. Although the movement of salts in soil solution is expressed in terms of mathematical model, which has certain limitations in practical application, except the exchangeable and absorbable state salts in soil solution. This model is illustrated by analyticl experiments in which evaporation from the bare soils, transpiration of plants and rainfall are required. Agreement between the model and the measured data was satisfactory, which validating the salt accumulation theory on the soil surface.

  • PDF

Characteristics of Photosynthesis with Growing Stages by different Shading Materials in Panax Ginseng C. A. Meyer (차광재료에 따른 생육시기별 인삼의 광합성작용의 특성)

  • Lee, Chung-Yeol
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.4
    • /
    • pp.276-284
    • /
    • 2007
  • To investigate the influence of shading materials with growing stages in Panax Ginseng C. A. Meyer, the diurnal change of photosynthesis, stomatal conductance, transpiration and its any correlation were measured. The net photosynthetic rate and stomatal conductance of ginseng were higher in the morning than in the broad day. The net photosynthetic rate was increased as the PAR (Photosynthetically Action Radiation) was increased and it was reached the maximum at the $200\;{\mu}mol/m^2/s$ of PAR in overall leaves. Transpiration rate was increased in the afternoon compared to in the morning. The transpiration rate was higher in rain shelter shading plate than in polyethylene net. A linear equation was obtained between net photosynthetic rate and stomatal conductance in the morning. SPAD was higher in rain shelter shading plate than in polyethylene net through all growth stages. It may result from the decrease of growth progress. From investigating photosynthetic characteristics, we concluded that shading plate of rain shelter was more an efficient material to ginseng growth.

Characteristics of Photosynthesis and Dry Matter Production of Liriope platyphylla $W_{ANG}\;et\;T_{ANG}$ (차광처리에 의한 맥문동의 광합성 및 물질 생산 특성)

  • Won, Jun-Yeon;Lee, Chung-Yeol
    • Korean Journal of Medicinal Crop Science
    • /
    • v.10 no.2
    • /
    • pp.82-87
    • /
    • 2002
  • This study was conducted to investigate the influence of shading treatment on the photosynthetic rate, transpiration rate, stomatal conductance and its any correlations in Liriope platyphylla $W_{ANG}\;et\;T_{ANG}$. Followings were achieved as a conclusion. The net photosynthetic rate was increased as the PAR was increased and reached maximum at the $700-1000{\mu}mol/m^2/s$ of PAR in all of leaves, also this treatment caused a higher net photosynthetic rate in comparison with control. It shows the tendency of increasing stomatal conductance caused by the increment of PAR. The diurnal changes of photosynthesis, transpiration rate and stomatal conductance were increased as the PAR was increased in the morning, but they indicated a decreased tendency in broad day. The relationship between net photosynthetic rate and stomatal conductance is well fit by the first regression linear equation. However, the values obtained from the linear equation have the different, respectively, and have highly significance. From the above results, net photosynthetic rate of shading treatment is higher than control in the same stomatal conductance. Different first regression linear equation were obtained between the transpiration rate and stomatal conductance, photosynthesis and stomatal conductance in during the control and shading treatment, too.

Research Activities of Transpiration Cooling for Liquid Rocket and Air-breathing Propulsions (액체로켓과 공기흡입식 추진기관을 위한 분출냉각의 연구동향)

  • Hwang, Ki-Young;Kim, You-Il;Song, In-Hyuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.235-240
    • /
    • 2010
  • Transpiration cooling is the most effective cooling technique for liquid rocket and air-breathing engines operating in aggressive environments with higher pressures and temperatures. Combustor liners and turbine vanes are cooled by the coolant(air or fuel) passing through their porous walls and also the exit coolant acting as an insulating film. However, its practical implementation has been hampered by the limitations of available porous materials. The search for more practical methods of increasing the internal heat transfer within the walls has led to the development of multi-laminate porous structures, such as Lamilloy$^{(R)}$ and Transply$^{(R)}$. This paper reviews recent research activities of transpiration cooling for the propulsions of liquid rocket, gas turbine, and scramjet.

  • PDF

Measurement of Vapor Pressure of Molten ZnCl2 and FeCl2 by the Transpiration Method (유동법에 의한 용융 ZnCl2 및 FeCl2의 증기압 측정)

  • Lee, Woo-Sang;Kim, Won-Yong;Jung, Woo-Gwang
    • Korean Journal of Materials Research
    • /
    • v.20 no.3
    • /
    • pp.111-116
    • /
    • 2010
  • Chloride-based fluxes such as NaCl-KCl are used in the refining of Al melt. The vapor pressure of the chloride is one of the fundamental pieces of information required for such processes, and is generally high at elevated temperatures. In order to measure the vapor pressure for chlorides, the apparatus for the transpiration method was assembled in the present study. The vapor pressure of $ZnCl_2$ and $FeCl_2$, which is related with the process of aluminum refining and the recovery of useful elements from iron and steel industry by-products, was also measured. In the measurement of vapor pressure by the transpiration method, the powder of $ZnCl_2$ or $FeCl_2$ in a alumina boat was loaded in the uniform zone of the furnace with a stream of Ar. The weight loss of $ZnCl_2$ and $FeCl_2$ after holding was measured by changing the flow rate of Ar gas (10 sccm -230 sccm), and the partial pressures of $ZnCl_2$ and $FeCl_2$ were calculated. The partial pressures within a certain range were found to be independent of the flow rate of Ar at different temperatures. The vapor pressures were measured in the temperature range of 758-901K for $ZnCl_2$ and 963-983K for $FeCl_2$. The measured results agreed well with those in the literature.

Dry Season Evaporation From Pine Forest Stand In The Middle Mountains Of Nepal

  • Gnawali, Kapil;Jun, KyungSoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.330-330
    • /
    • 2016
  • The quantification of dry season evaporation in regions, where the magnitude of dry season flows is key to the regional water supply, is essential for good water management. Also, tree transpiration has a significant role in the water balance of a catchment whenever it is tree populated, especially in water limited environments. Such is the case in the Middle Mountains of Nepal where dry season flows play a significant role in downstream water provisioning and their proper functioning is key to the welfare of millions of people. This research seeks to study the transpiration of a pine forest stand in the Jikhu Khola Watershed in the Middle Mountains of Nepal. To the author's knowledge, no single study has been made so far to estimate the dry season evaporation from the planted forest stand in the Middle Mountains of Nepal. The study was carried out in planted pine forest embedded within the Jikhu Khola Catchment. Field campaigns of sap flow measurements were carried out from September, 2010 to February, 2011 in the selected plot of 15*15m dimension, to characterize dry season evaporation. This was done by measuring sap fluxes and sapwood areas over the six trees of different Diameter at Breast Height (DBH) classes. The sap flux was assessed using Granier's thermal dissipation probe (TDP) technique while sapwood area was determined using several incremental core(s) taken with a Pressler borer and immediately dyeing with methyl orange for estimating the actual depth of sapwood area. Transpiration of the plot was estimated by considering the contribution of each tree class. For this purpose, sap flux density, sapwood area and the proportion of total canopy area were determined for each tree class of the selected plot. From these data, hourly and diurnal transpiration rates for the plot were calculated for experimental period. Finally, Cienciala model was parameterized using the data recorded by the ADAS and other terrain data collected in the field. The calibrated model allowed the extrapolation of Sap flux density (v) over a six month period, from September 2010 to February 2011. The model given sap flux density was validated with the measured sap flux density from Grainier method.

  • PDF

Field Treatments of Small Diameter Logs Using Sap Displacement Method (I) - Feasibility of Treatment Using Transpiration Method and Butt-end Method - (수액치환법을 이용한 소경재의 산지처리(I) - 증산법과 원구법을 이용한 처리 가능성 -)

  • Chun, Su-Kyoung;Kim, Jae-Jin;Ra, Jong-Bum;Kim, Gyu-Hyeok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.58-65
    • /
    • 2002
  • This research was carried out to develop field treatment techniques of thinned small diameter softwood logs and less utilized hardwood logs using sap displacement method. In this paper, we report the feasibility of using transpiration method and butt-end method for the treatment of three softwood species and three hardwood species with preservatives, fire-retardant chemicals, and dimensional stabilizer. Butt-end method was effective as a field treatment technique compared to transpiration method when considered the treatability, easiness of treatment, productivity of treated wood, and environmental aspects related to chemical treatment, regardless of the combination of wood species and chemicals.

Changes in Photosynthetic Performance and Water Relation Parameters in the Seedlings of Korean Dendropanax Subjected to Drought Stress (건조 스트레스에 따른 황칠나무 유묘의 광합성과 수분특성인자 변화)

  • Lee, Kyeong Cheol
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.2
    • /
    • pp.181-187
    • /
    • 2018
  • Background: This study aimed to investigate out the influence of drought stress on the physiological responses of Dendropanax morbifera seedlings. Methods and Results: Drought stress was induced by discontinuing water supply for 30 days. Under drought stress, photosynthetic activity was significantly reduced with decreasing soil water content (SWC), as revealed by the parameters such as Fv/Fm, maximum photosynthetic rate ($P_{N\;max}$), stomatal conductance ($g_s$), stomatal transpiration rate (E), and intercellular $CO_2$ concentration (Ci). However, water use efficiency (WUE) was increased by 2.5 times because of the decrease in $g_s$ to reduce transpiration. Particularly, E and $g_s$ were remarkably decreased when water was withheld for 21 days at 6.2% of SWC. Dendropanax morbifera leaves showed osmotic adjustment of -0.30 MPa at full turgor and -0.13 MPa at zero turgor. In contrast, the maximum bulk modulus of elasticity ($E_{max}$) did not change significantly. Thus, Dendropanax morbifera seedlings could tolerate drought stress via osmotic adjustment. Conclusions: Drought avoidance mechanisms of D. morbifera involve reduction in water loss from plants, through the control of stomatal transpiration, and reduction in cellular osmotic potential. Notably photosynthetic activity was remarkably reduced, to approximately 6% of the SWC.

Thermal Fatigue Behavior of 3D-Woven SiC/SiC Composite with Porous Matrix for Transpiration Cooling Passages

  • Hayashi, Toshimitsu;Wakayama, Shuichi
    • Advanced Composite Materials
    • /
    • v.18 no.1
    • /
    • pp.61-75
    • /
    • 2009
  • The effect of porous matrix on thermal fatigue behavior of 3D-orthogonally woven SiC/SiC composite was evaluated in comparison with that having relatively dense matrix. The porous matrix yields open air passages through its thickness which can be utilized for transpiration cooling. On the other hand, the latter matrix is so dense that the air passages are sealed. A quantity of the matrix was varied by changing the number of repetition cycles of the polymer impregnation pyrolysis (PIP). Strength degradation of composites under thermal cycling conditions was evaluated by the $1200^{\circ}C$/RT thermal cycles with a combination of burner heating and air cooling for 200 cycles. It was found that the SiC/SiC composite with the porous matrix revealed little degradation in strength during the thermal cycles, while the other sample showed a 25% decrease in strength. Finally it was demonstrated that the porous structure in 3D-SiC/SiC composite improved the thermal fatigue durability.