• Title/Summary/Keyword: transpiration.

Search Result 394, Processing Time 0.03 seconds

Development and Validation of Digital Twin for Analysis of Plant Factory Airflow (식물공장 기류해석을 위한 디지털트윈 개발 및 실증)

  • Jeong, Jin-Lip;Won, Bo-Young;Yoo, Ho-Dong;Kim, Tag Gon;Kang, Dae-Hyun;Hong, Kyung-Jin
    • Journal of the Korea Society for Simulation
    • /
    • v.31 no.1
    • /
    • pp.29-41
    • /
    • 2022
  • As one of the alternatives to solve the problem of unstable food supply and demand imbalance caused by abnormal climate change, the need for plant factories is increasing. Airflow in plant factory is recognized as one of important factor of plant which influence transpiration and heat transfer. On the other hand, Digital Twin (DT) is getting attention as a means of providing various services that are impossible only with the real system by replicating the real system in the virtual world. This study aimed to develop a digital twin model for airflow prediction that can predict airflow in various situations by applying the concept of digital twin to a plant factory in operation. To this end, first, the mathematical formalism of the digital twin model for airflow analysis in plant factories is presented, and based on this, the information necessary for airflow prediction modeling of a plant factory in operation is specified. Then, the shape of the plant factory is implemented in CAD and the DT model is developed by combining the computational fluid dynamics (CFD) components for airflow behavior analysis. Finally, the DT model for high-accuracy airflow prediction is completed through the validation of the model and the machine learning-based calibration process by comparing the simulation analysis result of the DT model with the actual airflow value collected from the plant factory.

Study of Paprika Growth Characteristic on Covering Selective Light Transmitting Filter in Greenhouse (선택적 광 투과에 따른 파프리카 생육특성 연구)

  • Kang, D.H.;Kim, D.E.;Lee, J.W.;Hong, S.J.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.23 no.1
    • /
    • pp.59-66
    • /
    • 2021
  • This study aimed to a basic research for the development of dye-sensitized solar cells that the wavelength band required for crop growth is passed, and the wavelength band that is not necessary for crop growth can be used for the generation of electricity. The transmissivity according to the illuminance was about 10% higher in the Blue filter and the Green filter than in the Red filter, but the transmissivity according to the PPFD was about 10% higher in the Red filter and the Blue filter than in the Green filter. In addition, the greenhouse attached with 30% infrared blocking filter was predicted to have a lower air temperature than other greenhouses, but it was investigated that there was no significant difference. Therefore, it was investigated that the application of the infrared cut filter would not be appropriate in a greenhouse that controls the temperature by opening a window. As a result of investigating, it was found that the Green and Blue filter greenhouses had the severe overgrowth and the stems grew weaker. The fresh weight of paprika in the infrared blocking filter greenhouse was the highest at 678.9g, and the growth of Red filter and the control greenhouses was relatively poor. Photosynthetic rate, amount of transpiration, and stomatal conductivity were the infrared blocking filter and control greenhouse higher than others. On the other hand, the water use efficiency did not show a big difference.

Enhancement of Photosynthetic Characteristics and Antioxidant Enzyme Activities on Chili Pepper Plants by Salicylic Acid Foliar Application under High Temperature and Drought Stress Conditions (고온 및 건조 스트레스 조건 하에서 살리실산 경엽처리에 의한 고추의 광합성 특성 및 항산화효소 활성 증대)

  • Lee, Jinhyoung;Lee, Heeju;Wi, Seunghwan;Lee, Hyejin;Choi, Haksoon;Nam, Chunwoo;Jang, Seonghoe
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.311-318
    • /
    • 2022
  • Salicylic acid (SA), a phenolic compound, plays a pivotal role in regulating a wide range of physiological and metabolic processes in plants such as antioxidant cellular defense, photosynthesis, and biotic and abiotic stress responses during the growth and development. We examined the effect of exogenous SA application (100 mg·L-1) on the growth, yield, photosynthetic characteristics, lipid peroxidation, and antioxidant enzyme activity of chili pepper plants under high temperature and drought stress conditions. SA treatment induced increases of net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) under the stress condition with the highest level after the third treatment. The contents of malondialdehyde and H2O2 were significantly lower in the third treatment of SA compared to the control. The activity of ascorbate peroxidase, catalase, peroxidase and superoxide dismutase, increased in treated plants by up to 247, 318, 55 and 54%, respectively compared to the nontreated control. There was no significant difference in the growth characteristics between SA-treated and nontreated plants, while the SA treatment increased marketable yield (kg/10a) by about 15% compared to the nontreated control. Taken together, these results suggest that foliar application of SA alleviates physiological damages caused by the combination of drought and heat stress, and enhances the photosynthetic capacity and antioxidant enzyme activities, thereby improving tolerance to a combination of water deficit and heat stress in chili pepper plants.

Systemic Acquired Resistance in Plants (전신획득저항성에 의한 식물병 방어기작)

  • Dawon, Jeon;Taekyung, Kim;Gah-Hyun, Lim
    • Journal of Life Science
    • /
    • v.32 no.11
    • /
    • pp.908-917
    • /
    • 2022
  • Systemic acquired resistance (SAR) is a form of systemic immunity that prevents secondary infections of distal uninfected parts of plants by related or unrelated pathogens. SAR is mediated by several SAR-inducing chemicals or mobile signals that accumulate after pathogen infection. Several chemicals that move systemically have already been identified as SAR-inducing factors, despite the fact that the early mobile signal remains unclear. These chemicals can be transported into either the apoplastic or symplastic compartments. Many of the chemicals associated with SAR remain unknown in terms of their transport routes. There is recent evidence that azelaic acid (AzA) and glycerol-3-phosphate (G3P) are transported via plasmodesmata (PD) channels, which regulate the symplastic route. In contrast, salicylic acid (SA) is preferentially transported from pathogen-infected to uninfected parts via the apoplast. The pH gradient and SA deprotonation lead to apoplastic accumulation of SA before it accumulates in the cytosol. Moreover, there is evidence that the mobility of SA over a long distance is crucial for SAR and that the partitioning of SA into the symplast and cuticles is controlled by transpiration. Further research has shown that a portion of the total SA in leaves is partitioned into cuticular waxes. The purpose of this review is to discuss the role of SAR-inducing chemicals and the regulation of transport in SAR.

Comparison of Atmospheric Environmental Factors between Farms with Difference in Paprika Productivity (파프리카 생산성 차이 농가 간 지상부 환경요인 비교)

  • Kim, Ga Yeong;Woo, Seung Mi;Kim, Ho Cheol
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.785-789
    • /
    • 2021
  • Paprika productivity is different even in the same quality greenhouse and in the same region. These differences are known to due to differences in various environmental factors. This study was conducted to investigate the difference in the level of various environmental factors between high-productivity (HPF) and low-productivity (LPF) greenhouses. The largest difference between the two greenhouses in the daily or weekly average values of major environmental factors was the CO2 concentration, but the LPF was higher than the HPF, so it was not determined as a factor for the difference in productivity. Correlation analysis among 14 environmental factors showed a high correlation among irradiation or related factors in moisture. The regression coefficients of the linear regression model between vapor pressure deficit and relative humidity were -0.0202kpa in HPF and -0.0262kpa in LPF. In particular, in February and March, the vapor pressure deficit in LPF was 1.5kpa or more, and the cumulative vapor pressure deficit compared to the cumulative irradiation at the early period of cultivation increased rapidly. The reason for the low productivity in LPF is thought to be that the plant was affected by moisture stress due to high vapor pressure deficit and transpiration under low irradiation conditions in the early period of cultivation and in winter.

Prediction of Soil Moisture using Hydrometeorological Data in Selmacheon (수문기상자료를 이용한 설마천의 토양수분 예측)

  • Joo, Je Young;Choi, Minha;Jung, Sung Won;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5B
    • /
    • pp.437-444
    • /
    • 2010
  • Soil moisture has been recognized as the essential parameter when understanding the complicated relationship between land surface and atmosphere in water and energy recycling system. It has been generally known that it is related with the temperature, wind, evaporation dependent on soil properties, transpiration due to vegetations and other constituents. There is, however, little research concerned about the relationship between soil moisture and these constitutes, thus it is needed to investigate it in detail. We estimated the soil moisture and then compared with field data using the hydrometerological data such as atmospheric temperature, specific humidity, and wind obtained from the Flux tower in Selmacheon, Korea. In the winter season, subterranean temperature showed highly positive correlation with soil moisture while it was negatively correlated from the spring to the fall. Estimation of seasonal soil moisture was compared with field measurements with the correlation of determination, R=0.82, 0.81, 0.82, and 0.96 for spring, summer, fall, and winter, respectively. Comprehensive relationship from this study can supply useful information about the downscaling of soil moisture with relatively large spatial resolutions, and will help to deepen the understanding of the water and energy recycling on the earth's surface.

Shading Treatment-Induced Changes in Physiological Characteristics of Thermopsis lupinoides (L.) Link (차광처리에 따른 갯활량나물의 생리 특성)

  • Seungju Jo;Dong-Hak Kim;Jung-Won Yoon;Eun Ju Cheong
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.2
    • /
    • pp.198-209
    • /
    • 2024
  • This study aimed to investigate the impact of light intensity, manipulated through different shading levels, on the growth and physiological responses of Thermopsis lupinoides. To assess the effects of shading treatments, we examined leaf mass per area, chlorophyll content, chlorophyll fluorescence response, and photosynthetic characteristics. T. lupinoidesexhibited adaptive responses under low light conditions (50% shading), showing increased leaf area and decreased leaf mass per area as shading levels increased. These changes indicate morpho-physiological adaptations to reduced light availability. At 50% shading, the physiological and ecological responses were favorable, with optimal photosynthetic functions including chlorophyll content, photosynthesis saturation point, photosynthetic rate, carbon fixation efficiency, stomatal conductance, transpiration rate, and water use efficiency. However, at 95% shading, the essential light conditions for growth were not met, significantly impairing photosynthetic functions. Consequently, 50% shading was determined to be the most optimal condition for T. lupinoides growth. These findings provide valuable insights for effective ex-situconservation practices and site selection for T. lupinoides, serving as foundational data for habitat restoration efforts.

Stomatal Closure due to Water Stress in Plants (수분 스트레스에 의한 식물의 기공 닫힘)

  • Joon Sang Lee
    • Journal of Life Science
    • /
    • v.34 no.6
    • /
    • pp.426-433
    • /
    • 2024
  • The environmental stress that plants are most susceptible to is water stress. Abscisic acid (ABA) is a plant hormone synthesized by plants to counteract environmental stress. The role of stomata in plants is to allow the synthesis of sucrose by absorbing CO2, which greatly affects photosynthetic activity. In addition, stomata are pathways for transpiration, which releases H2O and help establish a water potential gradient that allows plant roots to continuously absorb water and inorganic substances from the soil. Plants have a mechanism to minimize water loss by closing their stomata when exposed to water-stressed environments. The most well-studied hypothesis concerning the mechanism of stomatal closure is the response to water stress. When a plant receives sufficient water, its stomata open during the day and close at night due to its circadian rhythm. In addition, stomatal closure occurs when the concentration of CO2 in the intercellular space increases. However, the mechanism of stomatal closure due to circadian rhythm and increased CO2 concentration in the intercellular space is not well understood. When plants undergo water stress, the increased concentration of ABA in the guard cell cytoplasm induces an increase in Ca2+ concentration, resulting in cytoplasmic depolarization. As a result, the outward K+-channel of the tonoplast and the slow-type anion channels SLAC1 and SLAH3 are activated, releasing K+, Cl-, and malate2-, causing the stomata to close. Therefore, in this paper, the mechanism of stomatal closure caused by water stress was investigated.

Leaf gas exchange of Hibiscus hamabo and soil respiration in its habitats on Jeju Island (제주도 황근(Hibiscus hamabo) 잎의 기체 교환과 자생지에서의 토양호흡)

  • Yoojin Choi;Gwang-Jung Kim;Jeongmin Lee;Hyung-Sub Kim;Yowhan Son
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.439-446
    • /
    • 2023
  • Mangroves are distributed in intertidal zones of coastal environments or estuarine margins, playing a critical role in the global carbon cycle. However, understanding of the carbon cycle role of mangrove associates in the Republic of Korea is still limited. This research measured soil respiration and leaf gas exchange in three habitats of Hibiscus hamabo(Gimnyeong, Seongsan, and Wimi) and analyzed the impacts on sites and months. Soil respiration was measured once a month from June to October 2022 and leaf gas exchange was measured monthly from June to September 2022. Soil respiration in August(5.7±0.8 μmol CO2 m-2 s-1) was significantly higher than that in other months (p<0.001) and soil respiration increased as air temperature increased (p<0.001). In Seongsan, net photosynthesis in July(9.0±0.9μmol m-2 s-1) was significantly higher than that in other months (p<0.001). Net photosynthesis increased as stomatal conductance and transpiration rate increased during the entire period(p<0.001). Furthermore, a weak positive linear relationship was observed between soil respiration and net photosynthesis (r2=0.12; p<0.01). The results indicated that soil respiration was influenced not only by air temperature and season but also by net photosynthesis. This study is expected to provide basic information on the carbon dynamics of mangrove associates.

Effect of Exogenous Application of Sodium Nitroprusside on Alleviation of Low Temperature Stress in Kimchi Cabbage (Brassica rapa ssp. pekinensis) (Sodium Nitroprusside 처리가 배추의 저온 스트레스 경감에 미치는 영향)

  • Jinhyoung Lee;Seunghwan Wi;Hyejin Lee;Sanggyu Lee;Minseo Kang;Taeyang Kim;Seonghoe Jang;Heeju Lee
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.377-383
    • /
    • 2023
  • The effects of exogenous sodium nitroprusside (SNP, nitric oxide donor) on the growth, yield, photosynthetic characteristics, and antioxidant enzyme activity of kimchi cabbage (Brassica rapa L. subsp. pekinensis (Lour.) Hanelt) was studied under the low temperature conditions. Kimchi cabbages were treated with SNP of three concentrations (7.5, 15, 30 mg·L-1) for three times at four-day intervals and exposed to low temperature (16/7℃) stress for seven days. SNP treatment induced increases of net photosynthetic rate (Pn), stomatal conductance (Gs), intracellular CO2 concentration (Ci) and transpiration rate (Tr) under the stress condition with the highest level after the third treatment. The contents of malondialdehyde (MDA) and H2O2 were significantly lower in the treatment of SNP compared to the non-treated control. The activity of ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD), increased in treated plants by up to 38, 187, 24 and 175%, respectively compared to the non-treated control. SNP-treated and untreated plants had similar growth characteristics. Compared to the control group, SNP-treatment increased fresh weight and leaf area by 5%. Overall, our findings suggest that the application of sodium nitroprusside to the leaves contributes to reducing physiological damage and enhancing the activities of antioxidant enzymes, thereby improving low temperature stress tolerance in kimchi cabbage.