• Title/Summary/Keyword: transonic jet

Search Result 18, Processing Time 0.026 seconds

An Experimental Study on Noise Phenomena in Supersonic Over-expanded Jet (초음속 과팽창 제트에서 발생하는 소음현상에 관한 실험적 연구)

  • Kweon Yong-Hun;Lim Chae-Min;Kim Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.337-340
    • /
    • 2006
  • The present paper describes an experimental work to investigate a transonic resonance in supersonic jet that is discharged from a convergent-divergent nozzle. When the nozzle m: at low nozzle pressure ratios, the shock occurs within the divergent section of the nozzle. The transonic resonance of a jet flow is generated by an emission of strong acoustic tones due to the unsteadiness of the shock. A Schlieren optical system is used to visualize the supersonic jet flow In order to specify the flow resonance of a jet, acoustic measurements are performed to obtain noise spectra. The acoustic characteristics of transonic resonace are compared with those of screech tones. The results obtained show that unlike screech frequency, the transonic reso- nace frequency somewhat increases with increasing the nozzle pressure ratio.

  • PDF

Drag Assessment of Transonic Missile due to Engine Plume (엔진화염에 따른 천음속 유도탄의 항력 평가)

  • Ahn C. S;Jung S. Y
    • Journal of computational fluids engineering
    • /
    • v.8 no.3
    • /
    • pp.7-11
    • /
    • 2003
  • Accurate assessment of the effect of jet plume on the boattail pressure drag of transonic airbreathing missiles is very important to reduce drag and to satisfy the flight range and the required maneuver. Numerical results of drag analysis for boattail and base pressures due to jet plume are presented considering the turbulence modeling. Drag assessment due to the size of jet plume, the conditions of the exhaust gas, the configurations of the boattail, and transonic mach numbers is included.

Transonic Aeroelastic Analysis of Business Jet Aircraft Wing Model (비즈니스 제트 항공기 날개의 천음속 공탄성 해석)

  • Kim, Yo-Han;Kim, Dong-Hyun;Tran, Thanh-Toan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.299-299
    • /
    • 2011
  • In this study, transonic aeroelastic response analyses have been conducted for the business jet aircraft configuration considering shockwave and flow separation effects. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to wing-body configurations. In transonic flight region, the characteristics of static and dynamic aeroelastic responses have been investigated for a typical wing-body configuration model. Also, it is typically shown that the current computation approach can yield realistic and practical results for aircraft design and test engineers.

  • PDF

Wavenumber analyses of panel vibrations induced by transonic wall-bounded jet flow from an upstream high aspect ratio rectangular nozzle

  • Hambric, Stephen A.;Shaw, Matthew D.;Campbell, Robert L.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.6
    • /
    • pp.515-528
    • /
    • 2019
  • The structural vibrations of a flat plate induced by fluctuating wall pressures within wall-bounded transonic jet flow downstream of a high-aspect ratio rectangular nozzle are simulated. The wall pressures are calculated using Hybrid RANS/LES CFD, where LES models the large-scale turbulence in the shear layers downstream of the nozzle. The structural vibrations are computed using modes from a finite element model and a time-domain forced response calculation methodology. At low flow speeds, the convecting turbulence in the shear layers loads the plate in a manner similar to that of turbulent boundary layer flow. However, at high nozzle pressure ratio discharge conditions the flow over the panel becomes transonic, and the shear layer turbulence scatters from shock cells just downstream of the nozzle, generating backward traveling low frequency surface pressure loads that also drive the plate. The structural mode shapes and subsonic and transonic surface pressure fields are transformed to wavenumber space to better understand the nature of the loading distributions and individual modal responses. Modes with wavenumber distributions which align well with those of the pressure field respond strongly. Negative wavenumber loading components are clearly visible in the transforms of the supersonic flow wall pressures near the nozzle, indicating backward propagating pressure fields. In those cases the modal joint acceptances include significant contributions from negative wavenumber terms.

On the Assessment of Compressibility Effects of Two-Equation Turbulence Models for Supersonic Transition Flow with Flow Separation

  • Sung, Hong-Gye;Kim, Seong-Jin;Yeom, Hyo-Won;Heo, Jun-Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.387-397
    • /
    • 2013
  • An assessment of two-equation turbulence models, the low Reynolds k-${\varepsilon}$ and k-${\omega}$ SST models, with the compressibility corrections proposed by Sarkar and Wilcox, has been performed. The compressibility models are evaluated by investigating transonic or supersonic flows, including the arc-bump, transonic diffuser, supersonic jet impingement, and unsteady supersonic diffuser. A unified implicit finite volume scheme, consisting of mass, momentum, and energy conservation equations, is used, and the results are compared with experimental data. The model accuracy is found to depend strongly on the flow separation behavior. An MPI (Message Passing Interface) parallel computing scheme is implemented.

TRANSONIC AEROELASTIC ANALYSIS OF LEARJET AIRCRAFT WING MODEL (리어제트 항공기 날개의 천음속 공탄성해석)

  • Tran, T.T.;Kim, D.H.;Kim, Y.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.453-457
    • /
    • 2011
  • In this study, transonic aeroelastic response analyses haw been conducted for the business jet aircraft configuration considering shockwave and flow separation effects. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to wing-body configurations. In transonic flight region, the characteristics of static and dynamic aeroelastic responses have been investigated for a typical wing-body configuration model. Also, it is typically shown that the current computation approach can yield realistic and practical results for aircraft design and test engineers.

  • PDF

Jet Effect on Afterbody Drag (후방 동체 항력에 대한 Jet의 영향)

  • Hur Ki-Hoon;Byon Woosik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.170-175
    • /
    • 2000
  • Parametric studies are performed of the factors influencing the afterbody drag. To display the effect of differing afterbody shapes, several ogive boattails with combinations of the base area and the angle of boattail end are computed using axisymmetric Navier-Stokes equations with central differencing and a DADI scheme. And Chien's $\kappa-\epsilon$ model is employed used for computations of turbulent flows around the base region. The effects of base area, boattail angle and jet on/off are illustrated on afterbody drag at transonic speed.

  • PDF

A Numerical Analysis of Transonic Flows in an Axisymmetric Main Nozzle of Air-Jet Loom (에어제트직기 주 노즐내 천음속 유동의 수치 해석적 연구)

  • Oh T. H.;Kim S. D.;Song D. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.168-173
    • /
    • 1998
  • A numerical analysis of axisymetric backward facing step main nozzle flow in air jet loom has been accomplished. To obtain basic design data for an optimum main nozzle for an air-jet loom and to predict the transonic/supersonic flow, a characteristic based upwind flux difference splitting compressible Navier-Stokes method has been used. The wall static pressure of the main nozzle and the flow velocity changes in the nozzle tube were analyzed by changing air tank pressures and acceleration tube lengths. The flow inside the nozzle experiences double choking one at the needle tip and the other at the acceleration tube exit at tank pressures over $4kg_f/cm^2$. The tank pressure $P_t$ leading to the critical condition depends on the acceleration tube length; i.e, $P_t$ is higher for longer acceleration tubes. The $P_t$ value required to bring the acceleration tube exit to the critical condition is nearly constant regardless of acceleration tube length. The round needle tip shape might lead to less total pressure loss when compared with step shape.

  • PDF

Experimental Investigation of Sonic Jet Flows for Wing/Nacelle Integration

  • Kwon, Eui-Yong;Roger Leblanc;Garem, Jean-Henri
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.522-530
    • /
    • 2001
  • An experimental study of compressible jet flows has been undertaken in a small transonic wind tunnel. The aim of this investigation was to realize a jet simulator in the framework of wing/nacelle integration research and to characterize the jet flow behavior. First, free jet configuration, and subsequently jet flow in co-flowing air stream configuration were analyzed. Flow conditions were those encountered in a typical flight condition of a generic transport aircraft, i.e. fully expanded sonic jet flows interacting with a compressible external flowfield. Conventional experimental techniques were used to investigate the jet flows-Schlieren visualization and two-component Laser Doppler Velocimetry (LDV). The mean and fluctuating properties were measured along the jet centerline and in the symmetric plane at various downstream locations. The results of two configurations show remarkable differences in the mean and fluctuating components and agree well with the trend observed by other investigators. Moreover, these experiments enrich the database for such flow conditions and verify the feasibility of its application in future aerodynamic research of wing/nacelle interactions.

  • PDF

Control of the Base Pressure of the Supersonic Jet Using an Orifice (오리피스를 사용한 초음속 제트에서의 기저 압력 제어에 관한 연구)

  • Lee, Jong-Sung;Kim, Heuy-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.2
    • /
    • pp.51-57
    • /
    • 2012
  • Base pressure at the base of high-speed jet has long been one of the important issues from both the view points of fluid dynamics as well as practical engineering applications. The base pressure characteristics of incompressible flows have been well known to date. However, the base pressure at transonic or supersonic speeds would be different due to the compressibility effects and shock waves. In the present paper, a CFD study has been performed to understand the base pressure characteristics at transonic and supersonic speeds, prior to experimental work. An emphasis is placed on the control of the base pressure using a simple orifice. A variety of supersonic jet plumes have been explored to investigate the flow variables influencing the base pressure. The results obtained were validated with existing experimental data and discussed in terms of the base pressure and discharge coefficient of the orifice.