• Title/Summary/Keyword: transonic airfoil flow

Search Result 43, Processing Time 0.021 seconds

Sensitivity analysis of transonic flow past a NASA airfoil/wing with spoiler deployments

  • AKuzmin, lexander
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.232-240
    • /
    • 2014
  • Transonic flow past a NASA SC(2)-0710 airfoil with deployments of a spoiler up to $6^{\circ}$ was studied numerically. We consider angles of attack from $-0.6^{\circ}$ to $0.6^{\circ}$ and free-stream Mach numbers from 0.81 to 0.86. Solutions of the unsteady Reynolds-averaged Navier-Stokes equations were obtained with a finite-volume solver using several turbulence models. Both stationary and time-dependent deployments of the spoiler were examined. The study revealed the existence of narrow bands of the Mach number, angle of attack, and spoiler deflection angle, in which the flow was extremely sensitive to small perturbations. Simulations of 3D flow past a swept wing confirmed the flow sensitivity to small perturbations of boundary conditions.

An Experimental Study on Transonic Airfoil Flows in a Shock Tube (충격파관 내 천음속 날개 유동에 관한 실험적 연구)

  • Lee, Dong-Won;Gwon, Sun-Beom;;Kim, Byeong-Ji;Kim, Tae-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.11-16
    • /
    • 2006
  • An experimental study of the transonic flows over NACA and double wedge airfoils was conducted with a shock tube. The configuration of test section with a slotted wall and chamber was designed and tested to minimize wall and reflected shock wave effects and use the shock tube as simple and less costly wind tunnel generating the relatively high Reynolds numbers transonic flow. Transonic airfoil flows at hot gas Mach numbers of 0.80~0.84, Reynolds number of about $1.2{\times}10^6$ on airfoil chord length and angles of attack of $0^{\circ}$ and $2^{\circ}$ were visualized with the shadowgraph method. The shock wave profiles on the airfoils were compared with the corresponding results from the conventional transonic wind tunnel tests. The experimental results showed that present shock tube exhibited the proper performance characteristics as transonic wind tunnel for tested Mach number range and airfoils.

Unsteady Transonic Flow Analysis over an Oscillatory Airfoil using upwind Navier-Stokes Method (Upwind Navier-Stokes 방법을 이용한 진동하는 익형 주위의 비정상 천음속 유동해석)

  • O Tae Hun;Kim Sang Deok;Song Dong Ju
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.137-143
    • /
    • 1999
  • The unsteady transonic viscous flow has been analyzed over an oscillatory airfoil. The CSCM(Conservative Supra Characteristic Method) upwind flux difference splitting method and the iterative time marching scheme having first order accuracy in time and second to third order accuracy in space was applied on dynamic meshes. A steady flow field of Mach number 0.7 has been calculated for the verification of unsteady algorithm. The time-accurate unsteady calculations have been done for NACA 0012 airfoil oscillating around quarter chord about freestream Mach number 0.6 on dynamic meshes. The results have been compared with the AGARD Case 3 experimental data. The periodic characteristics have been compared with the experimental results.

  • PDF

Transonic Aeroelastic Analyses of Wings Considering UViscous and Thickness Effects

  • Kim, Jong-Yun;Kim, Kyung-Seok;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.34-40
    • /
    • 2008
  • The aeroelastic analyses for several wing models were performed using the transonic small-disturbance (TSD) equation, which is very efficient, to consider the aerodynamic nonlinearities in the transonic region. For more accurate aerodynamic analysis of airfoil and wing models with shock waves, the viscous equations based on the Green's lag-entrainment equation of boundary-layer effects were coupled with the TSD equation in the transonic region. Finally the aeroelastic characteristics of wing models were investigated through comparisons of the aeroelastic analysis results for wing models considering the change of a thickness of the airfoil section. Moreover, the results of the aeroelastic analysis using the coupled TSD equation with the viscous equations were compared with those using the TSD equation for several wing models.

Unsteady Compressible Flow past an Airfoil near the Moving Surface (파형 곡면 위를 비행하는 2차원 WIG익형의 비정상 압축성 유동 해석)

  • Im Y. H.;Chang K. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.191-196
    • /
    • 1998
  • A two-dimensional airfoil flying over a wavy wall is calculated by solving the unsteady Euler equation. Unsteady Transonic flow over an NACA00012 airfoil in pitching motion has been computed for code validation. Some numerical results for NACA6409 airfoil under different wave number, wave length, fly height are presented. The numerical results show the variation of lift and pitching moment coefficients are increased as wave length decrease.

  • PDF

Aerodynamic Analysis Automation and Analysis Code Verification of an Airfoil in the Transonic Region (천음속영역에서 에어포일의 공력해석 자동화 및 해석코드 검증)

  • Kim, Hyun;Chung, Hyoung-Seog;Chang, Jo-Won;Choi, Joo-Ho
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.3
    • /
    • pp.7-15
    • /
    • 2006
  • Aerodynamic analysis of an airfoil in the transonic region was automated in order to enable parametric study by using the journal file of the commercial analysis code FLUENT, pre/post process Gambit and computational mathematics code MATLAB. The automated capability was illustrated via NACA 0012 and RAE 2822 airfoils. This analysis was carried out at Mach numbers ranged from 0.70 to 0.80, angles of attack; 1$^{\circ}$, 2$^{\circ}$ and 4$^{\circ}$, Reynolds numbers; 4.0${\times}$106, 6.5${\times}$106. The analysis results of a pressure coefficient were verified by comparing with the experimental data which were measured in terms of chord length because the pressure coefficient of an airfoil surface is a good estimator of flow characteristics. The results of two airfoils show that this analysis code is useful enough to be used in the design optimization of airfoil.

  • PDF

Transonic flow past a Whitcomb airfoil with a deflected aileron

  • Kuzmin, Alexander
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.3
    • /
    • pp.210-214
    • /
    • 2013
  • The sensitivity of transonic flow past a Whitcomb airfoil to deflections of an aileron is studied at free-stream Mach numbers from 0.81 to 0.86 and vanishing or negative angles of attack. Solutions of the Reynolds-averaged Navier-Stokes equations are obtained with a finite-volume solver using the $k-{\omega}$ SST turbulence model. The numerical study demonstrates the existence of narrow bands of the Mach number and aileron deflection angles that admit abrupt changes of the lift coefficient at small perturbations. In addition, computations reveal free-stream conditions in which the lift coefficient is independent of aileron deflections of up to 5 degrees. The anomalous behavior of the lift is explained by interplay of local supersonic regions on the airfoil. Both stationary and impulse changes of the aileron position are considered.

Transonic Flutter Characteristics of Supercritical Airfoils Considering Shockwave and Flow Separation Effects (충격파 및 유동박리 효과를 고려한 초임계 에어포일의 천음속 플러터 특성)

  • Kim, Dong-Hyun;Kim, Yu-Sung;Kim, Yo-Han;Kim, Seok-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.167-174
    • /
    • 2008
  • In this study, flutter analyses for supercritical airfoil have been conducted in transonic region. Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed static and dynamic responses of supercritical airfoil. Reynolds-averaged Navier-Stokes equations with Spalart-Allmaras (S-A) and SST ${\kappa}-{\omega}$ turbulence models are solved for unsteady flow problems. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of cascades for fluid-structure interaction (FSI) problems. Also, flow-induced vibration (FIV) analyses for various supercritical airfoil models have been conducted. Detailed flutter responses for supercritical are presented to show the physical performance and vibration characteristics in various angle of attack.

  • PDF

Transonic Flutter Characteristics of Supercritical Airfoils Considering Shockwave and Flow Separation Effects (충격파 및 유동박리 효과를 고려한 초임계 에어포일의 천음속 플러터 특성)

  • Lin, Han;Kim, Dong-Hyun;Kim, Yu-Sung;Kim, Yo-Han;Kim, Seok-Soo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.2
    • /
    • pp.8-17
    • /
    • 2009
  • In this study, flutter analyses for supercritical airfoil have been conducted in transonic region. Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed static and dynamic responses of supercritical airfoil. Reynolds-averaged Navier-Stokes equations with Spalart-Allmaras (S-A) and SST ${\kappa}-{\omega}$ turbulence models are solved for unsteady flow problems. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of cascades for fluid-structure interaction (FSI) problems. Also, flow-induced vibration (FIV) analyses for various supercritical airfoil models have been conducted. Detailed flutter responses for supercritical are presented to show the physical performance and vibration characteristics in various angle of attack.

  • PDF

CFD-EFD Mutual Validation Using a CFD Solver Based on Unstructured Meshes Developed at KAIST (KAIST 비정렬격자 기반 CFD 해석자를 이용한 CFD-EFD 상호 비교 검증)

  • Jung, Seongmun;Han, Jaeseong;Kwon, Oh Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.259-267
    • /
    • 2017
  • Flow fields around a KARI-11-180 airfoil, SDM and transonic body are numerically simulated by using an unstructured meshes based compressible flow solver developed at KAIST. RANS equations are solved to analyse the flow fields and Roe's FDS method is adopted to evaluate convective fluxes. Turbulence effect of the flow fields is modeled by a SA model, SST model and ${\gamma}-{\widetilde{Re}}_{{\theta}t}$ model. It is found that smaller drag coefficients are predicted for the KARI-11-180 airfoil when a transition phenomenon is considered and small deviations exist between CFD and EFD results. For the SDM, flow separation is observed at a leading edge and calculated aerodynamic properties show similar tendencies to experimental results. A shock wave on main wings of the transonic body is successfully captured by the present flow solver at a Mach number 0.9. Estimated pressure profiles by means of the present CFD method also agree well with those of wind tunnel results.