• Title/Summary/Keyword: transmit antennas

Search Result 340, Processing Time 0.026 seconds

Double Quadrature Spatial Modulation

  • Holoubi, Tasnim;Murtala, Sheriff;Muchena, Nishal;Mohaisen, Manar
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.27-33
    • /
    • 2019
  • Quadrature spatial modulation (QSM) utilizes the in-phase and quadrature spatial dimensions to transmit the real and imaginary parts, respectively, of a single signal symbol. Improved QSM (IQSM) builds upon QSM to increase the spectral efficiency by transmitting the real and imaginary parts of two signal symbols using antenna combinations of size of two. In this paper, we propose a double QSM (DQSM) scheme that transmits the real and imaginary parts of two signal symbols independently through any of the transmit antennas. The two signal symbols are drawn from two different constellations of the same size with the first symbol drawn from any of the conventional modulation sets while the second is drawn from an optimally rotated version of the first constellation. The optimum rotation angle is obtained through extensive Monte Carlo simulations to minimize the bit error rate (BER) of the system. Simulation results show that for a given spectral efficiency, DQSM performsrelatively close to IQSM while requiring a smaller number of transmit antennas, and outperformsIQSM by up to 2 dB when the same number of antennas are used.

Full-Diversity High-Rate STBC for 2 and 4 Transmitted Antennas (2,4개 전송 안테나를 위한 완전 다이버시티 고 부호율 STBC)

  • Yan, Yier;Lee, Moon-Ho;Ma, Yizhou
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.295-297
    • /
    • 2007
  • We design a new rate-3/2 full-diversity orthogonal space-time block code (STBC) for QPSK and 2 transmit antennas (TX) and 4 transmit antennas (TX) by enlarging the signalling set from the set of quaternions used in the Alamouti[I] and extendedcode and using additional members of the set of orthogonal matrices or Quasi-orthogonal matrices and higher than rate-5/4. Selective power scaling of information symbols is used to guarantee full-diversity while maximizing the coding gain (CG) and minimizing the transmitted signal peak-to-minimum power ratio (PMPR). The optimum power scaling factor is derived analytically and shown to outpetform schemes based only on constellation rotation while still enjoying a low-complexity maximum likelihood (ML) decoding algorithm.

  • PDF

Energy Efficiency Analysis of Antenna Selection Scheme in a Multi-User Massive MIMO Network (다중 사용자 거대 다중 안테나 네트워크에서 안테나 선택 기법의 에너지 효율 분석)

  • Jeong, Moo-woong;Ban, Tae-Won;Jung, Bang Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.57-60
    • /
    • 2015
  • Recently, a multi-user massive MIMO (MU-Massive MIMO) network has been attracting tremendous interest as one of technologies to accommodate explosively increasing mobile data traffic. The MU-Massive MIMO network can significantly enhance the network capacity because a base station (BS) equipped with large-scale transmit antennas can transmit high-rate data to multiple users simultaneously. In the MU-Massive MIMO network, transmit antenna selection schemes are generally used to decrease the computational complexity and cost of the BS. In this paper, we investigate the energy efficiency of the transmit antenna selection scheme in the MU-Massive MIMO network and the optimal number of selected transmit antennas for maximizing the energy efficiency.

  • PDF

Outage Performance of a Multi-Cell MIMO-OFDM Broadcast Transmission Method (다중-셀 다중 안테나 직교 주파수분할 다중화 기반 브로드캐스트 전송 방식의 아웃티지 성능)

  • Park, Jae-Cheol;Kim, Yun-Hee;Song, Ick-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7A
    • /
    • pp.720-726
    • /
    • 2008
  • In this paper, we propose a multi-cell cooperation method for broadcast packet data services in the orthogonal frequency division multiplexing (OFDM)-based cellular system with multiple transmit antennas. In the proposed method, to transmit two streams of spatially demultiplexed or transmit diversity coded symbols over a number of transmit antennas, we divide a coded packet into multiple subparts to which different cell groups and antenna pairs are assigned. The proposed method enhances the diversity order by transforming the channel frequency responses of two symbol streams in each subpart of the broadcast packet. The increase in diversity of the proposed method is shown with the outage probability under various configurations.

Transmit Precoder Design for Two-User Broadcast Channel with Statistical and Delayed CSIT

  • Sun, Yanjing;Zhou, Shu;Cao, Qi;Wang, Yanfen;Liu, Wen;Zhang, Xiaoguang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2124-2141
    • /
    • 2018
  • Recent studies have revealed the efficacy of incorporating delayed channel state information at transmit side (CSIT) in transmission scheme design. This paper focuses on transmit precoder design to maximize the ergodic sum-rate in a two-user Multiple-Input Single-Output (MISO) system with delayed and statistical CSIT. A new transmit strategy which precodes signals in all transmit slots is proposed in this paper, denoted as all time-slots precoding Alternative MAT (AAMAT). There is a common procedure in conventional delayed-CSIT based schemes, which is retransmitting the overheard interferences. Since the retransmitting signal is intended to both users, all previous schemes tend to use only one antenna. We however figure out an improvement in spectral efficiency could be realized if all antennas can be utilized. In this paper, we detail the design of the procoder which enabling all antennas and also we compute a lower bound of the ergodic sum-rate in an ideal condition. In addition, simulation results demonstrate the superiority of our proposed scheme.

Miniaturization Development of Transmit/Receive Module using a 10W MEMS switch (10W급 MEMS 스위치를 이용한 송수신모듈 소형화 개발)

  • Yi, Hui-min;Jun, Byoung-chul;Lee, Bok-hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2417-2424
    • /
    • 2016
  • Small size and light weight is very important for components used in radar mounted platform such as airborne radar. Recently, the active phased array radar is developed as an array of antennas for thousands of transmit/receive modules to be used as a multi-function radar that can detect and track targets. In this case, the size and weight of the transmit/receive modules are critical factor for developing the radar. In this paper, we developed a compact transmit/receive module using the 10W RF MEMS switch domestically localizing and reduced the circuit area to about 86.5% compared to using a circulator. The developed module satisfies not only electrical requirements but also MIL-STD's environmental specifications. So it can be used in a military device. It can be used at adaptive tunable receivers, reconfigurable smart active antennas and wide band beam electrical steering antennas.

Quasi-Orthogonal STBC based on Partial Feedback with Adaptive Power Allocation under Imperfect Channel Estimation (채널 추정 에러와 동적 파워 할당 기술이 적용된 MIMO 시스템)

  • Huh, Chang-Yeul;Lee, Dong-Hun;Kim, Ki-Seon
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.83-84
    • /
    • 2007
  • Multiple-input multiple-output (MIMO) systems can achieve the increasing of performances by using an adaptive power allocation. The related previous work limited the transmit antenna number because orthogonal space-time block codes (OSTBCs) yield full transmit rate only for two transmit antennas. We extend a robust system under imperfect channel estimation for four transmission antennas with maintaining a full transmission rate.

  • PDF

Rotated-symbol Generalized Spatial Modulation

  • Muchena, Nishal;Murtala, Sheriff;Holoubi, Tasnim;Mohaisen, Manar
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.34-40
    • /
    • 2019
  • In spatial modulation (SM), both the signal symbol and spatial symbol, i.e., the index of the antenna from which signal symbol is transmitted, carry information. To increase the number of bits carried by spatial symbols, more transmit antennas are required. In the generalized SM (GSM), the same signal symbol is transmitted from a combination of antennas, resulting in a reduction in the number of antennas required to achieve a given spectral efficiency. In this paper, we propose a rotated-symbol GSM (RGSM), in which the signal symbol is rotated with an angle corresponding to the position of the antenna index within the combination. This increases the number of spatial symbols by a factor equivalent to the length of the antenna combinations of the GSM. Numerically, SM, GSM and RGSM require 128, 17 and 12 transmit antennas to convey seven bits through the spatial symbols. Simulation results show that RGSM performs relatively close to GSM, and in several system settings, their error performances coincide.

Effect of Body Movement and Position of Antenna on the Capacity of WBAN Channel (인체 움직임과 안테나 위치가 WBAN 채널 용량에 미치는 영향 분석)

  • Ahn, Chun-Soo;Ahn, Byoung-Jik;Kim, Sun-Woo;Choi, Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.2
    • /
    • pp.229-234
    • /
    • 2012
  • This paper presents channel measurements for wireless body area network(WBAN) and provides performance evaluation from the measurement. We measured the radio propagation in 2.45 GHz ISM band in an anechoic chamber according to various human movements and the position of transmit antennas. Two transmit antennas are mounted on different positions of human body for the purpose of comparing the diversity gain and correlation between the channels in $2{\times}1$ multiple-input single-output(MISO) systems. The experimental results show that the outage capacity is closely related with the correlation coefficient between channels in transmit diversity system.

Phase Control of Transmit Antennas in SIMO Systems (다중 송신안테나 통신시스템에서 송신 안테나의 위상 조절 기법)

  • Kim, Young-Gil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8A
    • /
    • pp.612-617
    • /
    • 2012
  • Two phase control (PC) schemes using limited feedback are proposed for multiple-input single-output (MISO) systems. One PC scheme cophases channel gains with respect to the first transmit antenna channel gain, and the other PC scheme cophases channel gains by positioning all the channel gains into a fixed sector. We analyze the combined channel gain for both PC schemes, and find that the PC scheme that cophases with respect to the first transmit antenna channel gain provides 1.2 dB power gain over an orthogonal space-time block code (OSTBC) when the number of transmit antennas is four and the number of feedback bits is three.