• Title/Summary/Keyword: transmit antenna selection

Search Result 67, Processing Time 0.021 seconds

Joint Destination-Relay Selection and Antenna Mode Selection in Full-Duplex Relay Network

  • Tang, Yanan;Gao, Hui;Su, Xin;Lv, Tiejun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.2831-2847
    • /
    • 2017
  • In this paper, a joint destination-relay selection and antenna mode selection scheme for full-duplex (FD) relay network is investigated, which consists of one source node, N FD amplify-and-forward (AF) relays and M destination nodes. Multiple antennas are configured at the source node, and beamforming technique is adopted. Two antennas are employed at each relay, one for receiving and the other for transmitting. Only one antenna is equipped at each destination node. In the proposed scheme, the best destination node is firstly selected according to the direct links between the source node and destination nodes. Then the transmit and receive mode of two antennas at each relay is adaptively selected based on the relaying link condition. Meanwhile, the best relay with the optimal Tx/Rx antenna configuration is selected to forward the signals. To characterize the performance of the proposed scheme, the closed-form expression of the outage probability is derived; meanwhile, the simple asymptotic expressions are also obtained. Our analysis shows that the proposed scheme obtains the benefits of multi-relay diversity and multi-destination diversity. Moreover, extra space diversity in the medium SNR region can be achieved due to the antenna selection at the relay. Finally, Monte-Carlo simulations are provided to consolidate the analytical results, and show the effectiveness of the proposed scheme.

Projection of Spatial Correlation-Based Antenna Selection for Cognitive Radio Systems in Correlated Channels (인지무선 시스템의 상관채널에서 공간 상관 행렬 사영을 이용한 안테나 선택기법)

  • Cho, Jae-Bum;Jang, Sung-Jeen;Jung, Won-Sik;Kim, Jae-Moung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1A
    • /
    • pp.8-16
    • /
    • 2012
  • Recent work has been shown that cognitive radio systems with multiple antenna at both transmitter and receiver are able to improve performance of secondary users. In such system, the main drawback is the increased complexity and raised cost as the number of antennas increase. It is desirable to apply antenna selection which select a subset of the available antennas so as to solve these problems. In this paper, we consider antenna selection method for cognitive radio systems in correlated channel from the IEEE 802.11n. For a multiple-input multiple-output(MIMO) system with more antennas at transmitter than the receiver, we select the same number of transmit antennas as that of receive antennas. The exhaustive search for optimal antenna becomes impractical. We present criterion for selecting subset in terms of projection of channel correlation vector to increase performance of secondary user with decreasing interference at primary user.

Performance Analysis of Distributed Antenna Systems with Antenna Selection over MIMO Rayleigh Fading Channel

  • Yu, Xiangbin;Tan, Wenting;Wang, Ying;Liu, Xiaoshuai;Rui, Yun;Chen, Ming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3016-3033
    • /
    • 2014
  • The downlink performance of distributed antenna systems (DAS) with antennas selection is investigated in Rayleigh fading multicell environment, and the corresponding system capacity and bit error rate (BER) analysis are presented. Based on the moment generating function, the probability density function (PDF) and cumulative distribution function (CDF) of the effective signal to interference plus noise ratio (SINR) of the system are first derived, respectively. Then, with the available CDF and PDF, the accurate closed-form expressions of average channel capacity and average BER are further derived for exact performance evaluation. To simplify the expression, a simple closed-form approximate expression of average channel capacity is obtained by means of Taylor series expansion, with the performance results close to the accurate expression. Besides, the system outage capacity is analyzed, and an accurate closed-form expression of outage capacity probability is derived. These theoretical expressions can provide good performance evaluation for DAS downlink. It can be shown by simulation that the theoretical analysis and simulation are consistent, and DAS with antenna selection outperforms that with conventional blanket transmission. Moreover, the system performance can be effectively improved as the number of receive antennas increases.

An Adaptive-Harvest-Then-Transmit Protocol for Wireless Powered Communications: Multiple Antennas System and Performance Analysis

  • Nguyen, Xuan Xinh;Do, Dinh-Thuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.1889-1910
    • /
    • 2017
  • This paper investigates a protocol so-called Adaptive Harvest Then Transmit (AHTT) for wireless powered communication networks (WPCNs) in multiple-input single-output (MISO) downlink systems, which assists in transmitting signals from a multi-antenna transmitter to a single-antenna receiver. Particularly, the power constrained relay is supplied with power by utilizing radio frequency (RF) signals from the source. In order to take advantage of multiple antennas, two different linear processing schemes, including Maximum Ratio Combining (MRC) and Selection Combination (SC) are studied. The system outage capacity and ergodic capacity are evaluated for performance analysis. Furthermore, the optimal power allocation is also considered. Our numerical and simulation results prove that the implementation of multiple antennas helps boost the energy harvesting capability. Therefore, this paper puts forward a new way to the energy efficiency (EE) enhancement, which contributes to better system performance.

MIMO Precoding in 802.16e WiMAX

  • Li, Qinghua;Lin, Xintian Eddie;Zhang, Jianzhong (Charlie)
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.141-149
    • /
    • 2007
  • Multiple-input multiple-output (MIMO) transmit pre-coding/beamforming can significantly improve system spectral efficiency. However, several obstacles prevent precoding from wide deployment in early wireless networks: The significant feedback overhead, performance degradation due to feedback delay, and the large storage requirement at the mobile devices. In this paper, we propose a precoding method that addresses these issues. In this approach, only 3 or 6 bits feedback is needed to select a precoding matrix from a codebook. There are fifteen codebooks, each corresponding to a unique combination of antenna configuration (up to 4 antennas) and codebook size. Small codebooks are prestored and large codebooks are efficiently computed from the prestored codebook, modified Hochwald method and Householder reflection. Finally, the feedback delay is compensated by channel prediction. The scheme is validated by simulations and we have observed significant gains comparing to space-time coding and antenna selection. This solution was adopted as a part of the IEEE 802.16e specification in 2005.

A MIMO-OFDMA System Based on Grassmannian Beamforming with Antenna Selection (안테나 선택을 이용한 Grassmannian Beamforming 기반의 MIMO-OFDMA 시스템)

  • Yang, Suck-Chel;Park, Dae-Jin;Hong, Jeong-Ki;Shin, Yo-An
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.59-69
    • /
    • 2007
  • In this paper, we propose a MIMO-OFDMA (Multi Input Multi Output-Orthogonal Frequency Division Multiple Access) system based on Grassmannian beamforming for performance improvement of downlink real-time traffic transmission in harsh channel conditions with low CIR (Carrier-to-Interference Ratio). In the proposed system to reduce feedback information for the beamforming, we also apply Grassmannian Beamforming. Furthermore, we propose antenna selection scheme which performs the beamforming with more useful transmit antennas. In the proposed system, the optimal combination of transmit antennas with maximum MRT (Maximum Ratio Transmission) beamforming gain, is selected. Simulation results reveal that the proposed MIMO-OFDMA system achieves significant improvement of spectral efficiency in low CIR region as compared to a typical open-loop MIMO-OFDMA system using pseudo-orthogonal space time block code.

A Low Complexity Scheduling of Uplink Multiuser MIMO/FDD System (FDD 기반 상향링크 다중사용자 MIMO 시스템 상에서의 낮은 복잡도의 스케줄링 기법)

  • Cho, Sung-Yoon;Kim, Yohan;Kim, Dong-Ku
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.4
    • /
    • pp.430-436
    • /
    • 2007
  • In this paper, we assume the uplink multiuser MIMO system based on FDD. Considering the implementation of practical system, Antenna selection and Transmit Beamforming scheme are suggested. System model of both two schemes are introduced and the scheduling algorithm which approaches the optimal performance with affordable computational complexity is proposed for each transmission scheme. Simulation results show that the sum-rate of the proposed low complexity scheduler approaches the performance of brute-force scheduler which is believed to be the optimal scheme.

  • PDF

Low Complexity Antenna Selection based MIMO Scheduling Algorithms for Uplink Multiuser MIMO/FDD System (상향링크 다중사용자 MIMO/FDD 시스템을 위한 낮은 복잡도의 안테나 선택 기반 MIMO 스케줄링 기법)

  • Kim, Yo-Han;Cho, Sung-Yoon;Lee, Taek-Ju;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12C
    • /
    • pp.1164-1174
    • /
    • 2007
  • Antenna selection based MIMO schedulers are proposed to achieve the optimal performance with low complexity in uplink multiuser MIMO/FDD system. In this paper, three heuristic schedulers are proposed to approach the optimal performance which is achieved by the optimal Brute-Force Scheduler. Two search methods called sub-set and full-set way are also discussed to set up the antenna channels to be the candidates of the scheduler. Simulation results show that the sum rate and BER performance of the proposed CSS and SOAS schemes are about the same to that of the brute-force scheduler with affordable complexity, while RC-SOAS with further reduced complexity achieves almost the optimal performance in the case of small number of antennas. Moreover, the complexity can be additionally reduced by the sub-set search method when the number of transmit and receive antennas are 2 respectively, which is applicable in the realistic systems.

An antenna selection scheme considering low feedback rate in MIMO-OFDM systems for Personal Rapid Transit Systems (소형궤도열차 제어를 위한 MIMO-OFDM 시스템에서 낮은 귀환률을 고려한 안테나 선택 기법)

  • Park, Ho-Hwan;Lim, Jong-Kyung;Kim, Baek-Hyun;Yoo, Dong-Kwan;Kwak, Kyung-Sup
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.909-914
    • /
    • 2005
  • This paper proposes an efficient antenna selection scheme for PRT (Personal Rapid Transit) remote control in a wireless MIMO-OFDM systems. Using high correlation among neighboring sub-carriers, transmit antennas are selected by calculation based on the channel response of the center sub-carrier in each subgroup. This scheme reduces complexity of selection algorithm and significantly reduces the feedback channel information with small performance degradation. Especially, when feedback channel rate between a control base and a train is fixed, the proposed scheme can provide a significant advantage in high mobility.

  • PDF

Spatial Correlation-based Resource Sharing in Cognitive Radio SWIPT Networks

  • Rong, Mei;Liang, Zhonghua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.3172-3193
    • /
    • 2022
  • Cognitive radio-simultaneous wireless information and power transfer (CR-SWIPT) has attracted much interest since it can improve both the spectrum and energy efficiency of wireless networks. This paper focuses on the resource sharing between a point-to-point primary system (PRS) and a multiuser multi-antenna cellular cognitive radio system (CRS) containing a large number of cognitive users (CUs). The resource sharing optimization problem is formulated by jointly scheduling CUs and adjusting the transmit power at the cognitive base station (CBS). The effect of accessing CUs' spatial channel correlation on the possible transmit power of the CBS is investigated. Accordingly, we provide a low-complexity suboptimal approach termed the semi-correlated semi-orthogonal user selection (SC-SOUS) algorithm to enhance the spectrum efficiency. In the proposed algorithm, CUs that are highly correlated to the information decoding primary receiver (IPR) and mutually near orthogonal are selected for simultaneous transmission to reduce the interference to the IPR and increase the sum rate of the CRS. We further develop a spatial correlation-based resource sharing (SC-RS) strategy to improve energy sharing performance. CUs nearly orthogonal to the energy harvesting primary receiver (EPR) are chosen as candidates for user selection. Therefore, the EPR can harvest more energy from the CBS so that the energy utilization of the network can improve. Besides, zero-forcing precoding and power control are adopted to eliminate interference within the CRS and meet the transmit power constraints. Simulation results and analysis show that, compared with the existing CU selection methods, the proposed low-complex strategy can enhance both the achievable sum rate of the CRS and the energy sharing capability of the network.