• 제목/요약/키워드: transmission diversity

Search Result 400, Processing Time 0.026 seconds

Adaptive MIMO Transmission Method based on the Optimal Combination of Antenna Diversity with Spatial Multiplexing (안테나 다이버시티와 공간 다중화의 조합에 기초한 적응적 MIMO 전송 기법)

  • Kim, Dae-Hyun;Kim, Hyung-Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5A
    • /
    • pp.394-401
    • /
    • 2007
  • MIMO transmission systems can have various transmission modes, which result from the various combinations of the antenna diversity with spatial multiplexing. In this paper, we find the optimal mode to maximize the capacity with the BER constraint and the optimal selection (diversity transmission or spatial multiplexing transmission) for transmission of each transmission antenna, if necessary. The computer simulation results show that the proposed scheme has more capacity than the conventional scheme.

Transmission Diversity Scheme Using Antenna Array of Small Cell (소형 기지국의 안테나 배열을 이용한 전송 다이버시티 기법)

  • Paik, Jong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.3
    • /
    • pp.301-303
    • /
    • 2016
  • This paper proposes a method providing diversity gain using small base stations in a cell coverage in order to improve diversity gain. The small base stations and the conventional base station consist a virtual MIMO array by using the cooperative communication scheme. Also, transmission diversity scheme is applied. A mobile user can receive the signals having the improved reliability by the applied transmission diversity scheme and the cooperative communication scheme.

Frequency Diversity using Orthogonal Encoder and Decoder in the OFDM Transmission with No Transmission (비전송을 채택한 OFDM 전송방식에서의 직교 부호화 및 복호화를 이용하는 주파수 Diversity)

  • 고예윤;강홍구;조규섭
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.19-22
    • /
    • 2003
  • 본 논문에서는 비전송을 갖는 OFDM 전송을 위한 직교 부호화기와 복호화기를 사용하는 새로운 주파수 diversity 기술을 제안하였다. 기존의 주파수 diversity 방식이 하나의 데이터를 여러 개의 부반송파들을 이용하여 전송하는 반면, 제안한 주파수 diversity 방식은 직교적으로 부호화된 여러 데이터를 여러 개의 부반송파를 통하여 전송한다. 따라서, 제안한 방식은 하나의 데이터가 여러 부반송파를 통하여 전송되므로, diversity 에 의한 성능의 이득을 유지하면서도 하나의 부 반송파에 직교적으로 혼합된 또 다른 전송 심벌을 전송하므로 기존 주파수 diversity 의 단점인 주파수 대역폭의 비효율성을 만들지 않는 장점을 갖게 된다.

  • PDF

Analysis of Phase Noise Effects in OFDM Transmit Diversity Systems (OFDM 송신 다이버시티 시스템에서의 위상잡음 영향 분석)

  • Lee, Jong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.243-249
    • /
    • 2006
  • In this paper, the phase noise effects of OFDM transmission diversity systems were analyzed. Since OFDM communication system is very sensitive to phase noise, the system performance may degrade seriously due to the increase of subcarrier interferences and system noise. Therefore, The phase noise model was suggested and its distribution and power were varied to investigate the effects of phase noise on the system performance. The degree of the system performance degradation depends on the specific diversity structures of transmission systems. Here, the performances of OFDM systems with two and three antennas transmission diversity were analyzed and compared with that of systems without transmission diversity as the phase noise characteristics varied.

A study on performance enhancement of cyclic delay diversity OFDM system using frequency diversity (주파수 다이버시티를 이용한 순환 지연 다이버시티 OFDM 시스템의 성능 향상 연구)

  • Jung, Hyeok-Koo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.3A
    • /
    • pp.135-140
    • /
    • 2012
  • This paper proposes a technology for performance enhancement of cyclic delay diversity OFDM system using frequency diversity. The frequency diversity in an OFDM system can be done as repetitive transmission of the same symbol on uncorrelated subcarrier, this makes modulation level larger according to the number of repetitive transmission for the comparison with the traditional transmission system. This technique, like cyclic delay diversity, has a benefit which it does not need any special subsidiary hardware irrespective of the increase of the number of transmitter. For the performance comparison, we simulate the proposed algorithm in multiple input single out channel environment, it shows a better performance enhancement in low dense modulation level in comparison with the traditional cyclic delay diversity OFDM system.

A Spread Spectrum System Using Adaptive Modulation and Switched Diversity (적응변조와 안테나 교환 다이버시티 기술을 사용한 대역 확산 시스템)

  • Park, Jin-Kyu;Lim, Chang-Heon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.4 s.119
    • /
    • pp.440-447
    • /
    • 2007
  • The switched diversity, although its performance is a little inferior to the selection diversity, is widely used due to its advantage that only one RF circuit is required for its operation without respect to the number of antennas in use. In this paper, we propose an application of the antenna switched diversity to a spread spectrum system with adaptive modulation and derived the optimal antenna switching threshold to maximize the average transmission bit rate. We also compared the performances of the proposed system with those of the two cases using a single antenna and the selection diversity with two antennas in terms of the average number of bits per symbol(BPS), the probability of no transmission, and the average BER. The performance analysis shows that, if the number of paths in a multipath channel environment increases, the performance of the proposed scheme becomes closer to that of the selection diversity based system in terms of the average BPS. Furthermore, the proposed scheme produces as almost high the probability of no transmission as the selection diversity based system for the case of low average SNR, although the former yields a little higher probability of no transmission than the latter fer the case of high average SNR.

STF-OFDM Transmission Scheme via Preceding in Frequency Domain (주파수 영역에서의 사전 부호화를 이용한 STF-OFDM 전송 기법)

  • 박상순;김한경;백흥기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7C
    • /
    • pp.954-961
    • /
    • 2004
  • In this paper, we propose a STF(Space-Time-Frequency) coded OFDM(Orthogonal Frequency Division Multiplexing) transmission scheme as an attractive solution for high bit rate data transmission in a multipath fading environment. The STF-OFDM transmission scheme that we propose in this paper is a simple transmission cheme for achieving frequency diversity gain with low complexity. Using preceding in frequency domain, we obtain frequency diversity gain and improve the SER performance of conventional ST-OFDM. The preceding scheme proposed in this paper is a very simple method that can be encoded and decoded with low complexity.

Relay-assisted Multiple Access Channel Protocol for Cooperative Diversity

  • Kim, Dong-Hyun;Kim, Gil;Lee, Kwang-Bok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1C
    • /
    • pp.1-8
    • /
    • 2009
  • Cooperative diversity is a novel technique to improve diversity gains, capacity gains, and energy saving. This technique involves multiple terminals sharing resources in order to build a virtual antenna array in a distributed fashion. In this paper, we propose a multi-user cooperative diversity protocol called Relay-assisted Multiple Access Channel(R-MAC) that allows multiple source terminals to transmit their signals simultaneously and the relay terminal forwards the aggregated signal received from the source terminals to the destination terminal. The proposed protocol converts the distributed antenna channels into an effective MIMO channel by exploiting a relay, increasing both diversity gain and system throughput. We investigate the performance of the proposed protocol in terms of outage probability and diversity-multiplexing tradeoff where we assume block fading channel environment. Our simulation results show that the proposed protocol outperforms direct transmission in the high spectral efficiency regime where the conventional cooperative diversity protocols cannot outperform direct transmission.

Multi-Relay Cooperative Diversity Protocol with Improved Spectral Efficiency

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • v.13 no.3
    • /
    • pp.240-249
    • /
    • 2011
  • Cooperative diversity protocols have attracted a great deal of attention since they are thought to be capable of providing diversity multiplexing tradeoff among single antenna wireless devices. In the high signal-to-noise ratio (SNR) region, cooperation is rarely required; hence, the spectral efficiency of the cooperative protocol can be improved by applying a proper cooperation selection technique. In this paper, we present a simple "cooperation selection" technique based on instantaneous channel measurement to improve the spectral efficiency of cooperative protocols. We show that the same instantaneous channel measurement can also be used for relay selection. In this paper two protocols are proposed-proactive and reactive; the selection of one of these protocols depends on whether the decision of cooperation selection is made before or after the transmission of the source. These protocols can successfully select cooperation along with the best relay from a set of available M relays. If the instantaneous source-to-destination channel is strong enough to support the system requirements, then the source simply transmits to the destination as a noncooperative direct transmission; otherwise, a cooperative transmission with the help of the selected best relay is chosen by the system. Analysis and simulation results show that these protocols can achieve higher order diversity with improved spectral efficiency, i.e., a higher diversity-multiplexing tradeoff in a slow-fading environment.