• Title/Summary/Keyword: translational research

Search Result 527, Processing Time 0.025 seconds

Comparison of the retentive characteristics of two additional attachment used with an implant bar attachment (임플란트 bar 어태치먼트에 사용하는 두 가지 부가적인 유지장 치의 유지력 특성 비교)

  • Choi, Jae-Won;Chae, Sung-Ki;Huh, Jung-Bo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.2
    • /
    • pp.173-180
    • /
    • 2021
  • Purpose: The purpose of this study was to evaluate the retentive characteristics of the additional attachments used with implant bar attachment under repeated insertion/removal cycles. Materials and methods: The newly developed attachment and the commercially available attachment were investigated: ADD-Lock (AL), Locator blue (LB). Two fixtures were placed parallel to each other on the custom lower mounting, and patrix of each attachment was fixed to the fixture. Also, the matrix of each attachment was placed on the opposing upper mounting. A universal testing machine was used to measure the retentive force during initial, 100, 250, 500, 1000, 2000, and 2500 repeated insertion/removal cycles. Wear and deformation of the attachment s were observed by scanning electron microscopy (SEM). Mann-Whitney U test (α=.05) and wilcoxon signed-rank test (α=.05) were performed to compare retentive force between each group and before and after 2500 repeated insertion/removal cycles. Results: In terms of initial retentive force and retentive force after 2500 repeated insertion/removal cycles, the AL group (15.24 ± 1.46 N and 9.74 ± 1.16 N) showed significantly smaller values than the LB group (43.53 ± 12.39 N and 22.99 ± 4.77 N) (P<.05). Also, in the loss of retentive force, the AL group (5.50 ± 1.08 N, 36.08%) showed a smaller value than the LB group (20.54 ± 11.89 N, 47.19%) (P<.05). Based on SEM analysis, The AL group showed noticeable wear and deformation in the patrix and the LB group in the matrix. Conclusion: Locator showed a higher initial retentive force than newly developed attachment, while the loss of retentive force was also higher. Both additional attachments are considered to have sufficient retentive force after repeated insertion/removal cycles.

Effect of Antioxidant Enzymes on Hypoxia-Induced HIF-$1{\alpha}$ Accumulation and Erythropoietin Activity

  • Cho, Eun-Jin;Cho, Ki-Woon;Chung, Kyoung-Jin;Yang, Hee-Young;Park, Hyang-Rim;Park, Byung-Ju;Lee, Tae-Hoon
    • International Journal of Oral Biology
    • /
    • v.34 no.4
    • /
    • pp.205-213
    • /
    • 2009
  • The mechanisms underlying the actions of the antioxidants upon reactive oxygen species (ROS) generation by NADPH oxidase complex have remained uncertain. In this study, we investigated NADPH oxidase activity and the role of antioxidant enzymes upon the generation of ROS during hypoxic stress. ROS generation was found to increase in the mouse kidney under hypoxic stress in a time-dependent manner. Moreover, we found in MCT cells that hypoxia-induced hydrogen peroxide production was decreased by NAC pretreatment. We further analyzed HIF-$1{\alpha}$, PHD2 and VHL expression in the NAC-pretreated MCT cells and assessed the response of antioxidant enzymes at the transcriptional and translational levels. SOD3 and Prdx2 were significantly increased during hypoxia in the mouse kidney. We also confirmed in hypoxic $Prdx2^{-/-}$ and SOD3 transgenic mice that erythropoietin (EPO) is transcriptionally regulated by HIF-$1{\alpha}$. In addition, although EPO protein was found to be expressed in a HIF-$1{\alpha}$ independent manner in three mouse lines, its activity differed markedly between normal and $Prdx2^{-/-}$/SOD3 transgenic mice during hypoxic stress. In conclusion, our current results indicate that NADPH oxidase-mediated ROS generation is associated with hypoxic stress in the mouse kidney and that SOD3 and Prdx2 cooperate to regulate cellular redox reactions during hypoxia.

Methylation Levels of LINE-1 As a Useful Marker for Venous Invasion in Both FFPE and Frozen Tumor Tissues of Gastric Cancer

  • Min, Jimin;Choi, Boram;Han, Tae-Su;Lee, Hyuk-Joon;Kong, Seong-Ho;Suh, Yun-Suhk;Kim, Tae-Han;Choe, Hwi-Nyeong;Kim, Woo Ho;Hur, Keun;Yang, Han-Kwang
    • Molecules and Cells
    • /
    • v.40 no.5
    • /
    • pp.346-354
    • /
    • 2017
  • Long interspersed nuclear element-1 (LINE-1) is a retrotransposon that contains a CpG island in its 5'-untranslated region. The CpG island of LINE-1 is often heavily methylated in normal somatic cells, which is associated with poor prognosis in various cancers. DNA methylation can differ between formalin-fixed paraffin-embedded (FFPE) and frozen tissues. Therefore, this study aimed to compare the LINE-1 methylation status between the two tissue-storage conditions in gastric cancer (GC) clinical samples and to evaluate whether LINE-1 can be used as an independent prognostic marker for each tissue-storage type. We analyzed four CpG sites of LINE-1 and examined the methylation levels at these sites in 25 FFPE and 41 frozen GC tissues by quantitative bisulfite pyrosequencing. The LINE-1 methylation status was significantly different between the FFPE and frozen GC tissues (p < 0.001). We further analyzed the clinicopathological features in the two groups separately. In the frozen GC tissues, LINE-1 was significantly hypomethylated in GC tissues compared to their corresponding normal gastric mucosa tissues (p < 0.001), and its methylation status was associated with gender, differentiation state, and lymphatic and venous invasion of GC. In the FFPE GC tissues, the methylation levels of LINE-1 differed according to tumor location and venous invasion of GC. In conclusion, LINE-1 can be used as a useful methylation marker for venous invasion in both FFPE and frozen tumor tissues of GC.

The activation of NLRP3 inflammasome potentiates the immunomodulatory abilities of mesenchymal stem cells in a murine colitis model

  • Ahn, Ji-Su;Seo, Yoojin;Oh, Su-Jeong;Yang, Ji Won;Shin, Ye Young;Lee, Byung-Chul;Kang, Kyung-Sun;Sung, Eui-Suk;Lee, Byung-Joo;Mohammadpour, Hemn;Hur, Jin;Shin, Tae-Hoon;Kim, Hyung-Sik
    • BMB Reports
    • /
    • v.53 no.6
    • /
    • pp.329-334
    • /
    • 2020
  • Inflammasomes are cytosolic, multiprotein complexes that act at the frontline of the immune responses by recognizing pathogen- or danger-associated molecular patterns or abnormal host molecules. Mesenchymal stem cells (MSCs) have been reported to possess multipotency to differentiate into various cell types and immunoregulatory effects. In this study, we investigated the expression and functional regulation of NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome in human umbilical cord blood-derived MSCs (hUCB-MSCs). hUCB-MSCs expressed inflammasome components that are necessary for its complex assembly. Interestingly, NLRP3 inflammasome activation suppressed the differentiation of hUCB-MSCs into osteoblasts, which was restored when the expression of adaptor proteins for inflammasome assembly was inhibited. Moreover, the suppressive effects of MSCs on T cell responses and the macrophage activation were augmented in response to NLRP3 activation. In vivo studies using colitic mice revealed that the protective abilities of hUCB-MSCs increased after NLRP3 stimulation. In conclusion, our findings suggest that the NLRP3 inflammasome components are expressed in hUCB-MSCs and its activation can regulate the differentiation capability and the immunomodulatory effects of hUCB-MSCs.

Characterization of the Interaction of Sulfiredoxin (Srx1) with a Vacoular Protein $\alpha$-Mannosidase (Ams1) in Saccharomyces cerevisiae (설피리독신과 알파-만노시다제 간의 단백질 결합 특성에 관한 고찰)

  • Barando, Karen P.;Kim, Il-Han
    • The Journal of Natural Sciences
    • /
    • v.17 no.1
    • /
    • pp.13-29
    • /
    • 2006
  • Most redox-active proteins have thiol-bearing cysteine residues that are sensitive to oxidation. Cysteine thiols oxidized to sulfenic acid are generally unstable, either forming a disulfide with a nearby thiol or being further oxidized to a stable sulfinic acid, which have been viewed as an irreversible protein modification. However, recent studies showed that cysteine residues of certain thiol peroxidases (Prxs) undergo reversible oxidation to sulfinic acid and the reduction reaction is catalyzed by sulfiredoxin (Srx1). Specific Cys residues of various other proteins are also oxidized to sulfinic acid ($Cys-So_2H$). Srxl is considered one of the oxidant proteins with a role in signaling through catalytic reduction of oxidative modification like in the reduction of glutathionylation, a post-translational, oxidative modification that occurs on numerous proteins. In this study, the role of sulfiredoxin in cellular processes, was investigated by studying its interaction with other proteins. Through the yeast two-hybrid system (Y2HS) technique, we have found that Ams1 is a potential and novel interacting protein partner of Srxl. $\alpha$-mannosidase (Ams1) is a resident vacuolar hydrolase which aids in recycling macromolecular components of the cell through hydrolysis of terminal, non-reducing $\alpha$-D-mannose residues. It forms an oligomer in the cytoplasm and under nutrient rich condition and is delivered to the vacuole by the Cytoplasm to Vacuole (Cvt) pathway. Aside from the role of Srxl as a catalyst in the reduction of cysteine sulfenic acid groups, it may play a completely new function in the cellular process as indicated by its interaction with Ams1 of the yeast Saccharomyces cerevisiae.

  • PDF

A Micro-robotic Platform for Micro/nano Assembly: Development of a Compact Vision-based 3 DOF Absolute Position Sensor (마이크로/나노 핸들링을 위한 마이크로 로보틱 플랫폼: 비전 기반 3자유도 절대위치센서 개발)

  • Lee, Jae-Ha;Breguet, Jean Marc;Clavel, Reymond;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.125-133
    • /
    • 2010
  • A versatile micro-robotic platform for micro/nano scale assembly has been demanded in a variety of application areas such as micro-biology and nanotechnology. In the near future, a flexible and compact platform could be effectively used in a scanning electron microscope chamber. We are developing a platform that consists of miniature mobile robots and a compact positioning stage with multi degree-of-freedom. This paper presents the design and the implementation of a low-cost and compact multi degree of freedom position sensor that is capable of measuring absolute translational and rotational displacement. The proposed sensor is implemented by using a CMOS type image sensor and a target with specific hole patterns. Experimental design based on statistics was applied to finding optimal design of the target. Efficient algorithms for image processing and absolute position decoding are discussed. Simple calibration to eliminate the influence of inaccuracy of the fabricated target on the measuring performance also presented. The developed sensor was characterized by using a laser interferometer. It can be concluded that the sensor system has submicron resolution and accuracy of ${\pm}4{\mu}m$ over full travel range. The proposed vision-based sensor is cost-effective and used as a compact feedback device for implementation of a micro robotic platform.

High-level Production of Recombinant Human IFN-$\alpha2a$ with Co-expression of $tRNA^{Arg(AFF/AGA)}$ in High-cell-density Cultures of Escherichia coli

  • Shin, Chul-Soo;Hong, Min-Seon;Shin, Hang-Chel;Lee, Jeewon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.4
    • /
    • pp.301-305
    • /
    • 2001
  • The co-expression of the arg U gene in a double-vector expression system of recombi-nant Escherichia coli BL22(DE3)[pET-IEN2a+pAC-argU] significantly enhanced the production level of reconminant human interferon -$\alpha$2a(rhIFN-$\alpha$2a) in high cell density cultures, compared to a recombinant E. coli culture containing only the single expression vector, pET-IEN2a. The dry cell mass concentration increased to almost 100 g/L, and more than 4 g/L of rhIFN-$\alpha$2a was accumu-lated in the culture broth. Evidently, the synthesis of rhIFN-$\alpha$2a was strongly dependent on the pre-induction growtih rate and more efficient at a higher specific growth rate. The additional sup-ply of tRN $A^{Arg(AGG/AGA)}$ enhanced the expression level of the rhIFN-$\alpha$2a gene in the early stage of the post-induction phase, yet thereafter the specific production rate of rhIFN-$\alpha$2a rapidly de-creased due to severe segregational instability of plasmid vector pET-IEN2a. It would appear that the plasmid instability with only occurred to pET-IEN2a in the double vector system, was re-lated to the effect of translational stress due to the over expression of rhIFN-$\alpha$2a.

  • PDF

Regulation of the Gene Encoding Glutathione Synthetase from the Fission Yeast

  • Kim, Su-Jung;Shin, Youn-Hee;Kim, Kyung-Hoon;Park, Eun-Hee;Sa, Jae-Hoon;Lim, Chang-Jin
    • BMB Reports
    • /
    • v.36 no.3
    • /
    • pp.326-331
    • /
    • 2003
  • The fission yeast cells that contained the cloned glutathione synthetase (GS) gene showed 1.4-fold higher glutathione (GSB) content and 1.9-fold higher GS activity than the cells without the cloned GS gene. Interestingly, $\gamma$-glutamylcysteine synthetase activity increased 2.1-fold in the S. pombe cells that contained the cloned GS gene. The S. pombe cells that harbored the multi copy-number plasmid pRGS49 (containing the cloned GS gene) showed a higher level of survival on solid media with cadmium chloride (1 mM) or mercuric chloride ($10\;{\mu}M$) than the cells that harbored the YEp357R vector. The 506 bp upstream sequence from the translational initiation point and N-terminal8 amino acid-coding region were fused into the promoteriess $\beta$-galactosidase gene of the shuttle vector YEp367R to generate the fusion plasmid pUGS39. Synthesis of $\beta$-galactosidase from the fusion plasmid pUGS39 was significantly enhanced by cadmium chloride and NO-generating S-nitroso-N-acetylpenicillamine (SNAP) and sodium nitroprusside (SN). It was also induced by L-buthionine-(S,R)-sulfoximine, a specific inhibitor of $\gamma$-glutamylcysteine synthetase (GCS). We also found that the expression of the S. pombe GS gene is regulated by the Atf1-Spc1-Wis1 signal pathway.

High Prevalence of Fluoroquinolone- and Methicillin-Resistant Staphylococcus pseudintermedius Isolates from Canine Pyoderma and Otitis Externa in Veterinary Teaching Hospital

  • Yoo, Jong-Hyun;Yoon, Jang-W.;Lee, So-Young;Park, Hee-Myung
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.4
    • /
    • pp.798-802
    • /
    • 2010
  • Recently, a total of 74 Staphylococcus pseudintermedius isolates were collected from clinical cases of canine pyoderma and otitis externa in Korea. In this study, we examined in vitro fluoroquinolone resistance among those isolates using a standard disc diffusion technique. The results demonstrated that, except for one isolate, approximately 18.9% to 27.0% of the isolates possessed bacterial resistance to both veterinary- and human-licensed fluoroquinolones including moxifloxacin (18.9% resistance), levofloxacin (20.3% resistance), ofloxacin (24.3% resistance), ciprofloxacin (25.7% resistance), and enrofloxacin (27.0% resistance). Most surprisingly, 14 out of 74 (18.9%) isolates were resistant to all the five fluoroquinolones evaluated. Moreover, a PCR detection of the methicillin resistance gene (mecA) among the 74 isolates revealed that 13 out of 25 (52.0%) mecApositive isolates, but only 7 out of 49 (14.3%) mecA-negative isolates, were resistant to one or more fluoroquinones. Taken together, our results imply that bacterial resistance to both veterinary- and human-use fluoroquinolones becomes prevalent among the S. pseudintermedius isolates from canine pyoderma and otitis externa in Korea, as well as that the high prevalence of the mecA-positive S. pseudintermedius isolates carrying multiple fluoroquinolones resistance could be a potential public health problem.

Tight junction protein 1 is regulated by transforming growth factor-β and contributes to cell motility in NSCLC cells

  • Lee, So Hee;Paek, A Rome;Yoon, Kyungsil;Kim, Seok Hyun;Lee, Soo Young;You, Hye Jin
    • BMB Reports
    • /
    • v.48 no.2
    • /
    • pp.115-120
    • /
    • 2015
  • Tight junction protein 1 (TJP1), a component of tight junction, has been reported to play a role in protein networks as an adaptor protein, and TJP1 expression is altered during tumor development. Here, we found that TJP1 expression was increased at the RNA and protein levels in TGF-${\beta}$-stimulated lung cancer cells, A549. SB431542, a type-I TGF-${\beta}$ receptor inhibitor, as well as SB203580, a p38 kinase inhibitor, significantly abrogated the effect of TGF-${\beta}$ on TJP1 expression. Diphenyleneiodonium, an NADPH oxidase inhibitor, also attenuated TJP1 expression in response to TGF-${\beta}$ in lung cancer cells. When TJP1 expression was reduced by shRNA lentiviral particles in A549 cells (A549-sh TJP1), wound healing was much lower than in cells infected with control viral particles. Taken together, these data suggest that TGF-${\beta}$ enhances TJP1 expression, which may play a role beyond structural support in tight junctions during cancer development.