• 제목/요약/키워드: translation word selection

검색결과 8건 처리시간 0.283초

Ranking Translation Word Selection Using a Bilingual Dictionary and WordNet

  • Kim, Kweon-Yang;Park, Se-Young
    • 한국지능시스템학회논문지
    • /
    • 제16권1호
    • /
    • pp.124-129
    • /
    • 2006
  • This parer presents a method of ranking translation word selection for Korean verbs based on lexical knowledge contained in a bilingual Korean-English dictionary and WordNet that are easily obtainable knowledge resources. We focus on deciding which translation of the target word is the most appropriate using the measure of semantic relatedness through the 45 extended relations between possible translations of target word and some indicative clue words that play a role of predicate-arguments in source language text. In order to reduce the weight of application of possibly unwanted senses, we rank the possible word senses for each translation word by measuring semantic similarity between the translation word and its near synonyms. We report an average accuracy of $51\%$ with ten Korean ambiguous verbs. The evaluation suggests that our approach outperforms the default baseline performance and previous works.

다양한 지식을 사용한 영한 기계번역에서의 대역어 선택 (Target Word Selection for English-Korean Machine Translation System using Multiple Knowledge)

  • 이기영;김한우
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권5호
    • /
    • pp.75-86
    • /
    • 2006
  • 일반적으로 영어를 한국어로 번역할 때, 대부분의 영어 명사 어휘들은 해당 어휘가 사용되는 문맥에 따라 다양한 한국어 명사로 번역될 수 있다. 따라서 영어 원문이 갖는 의미를 손실 없이 번역문으로 전달하기 위해서는 문맥에 맞는 올바른 한국어 대역어를 선택할 수 있어야 한다. 본 논문에서는 동사구패턴, 공기 정보에 기반한 의미벡터, 공기 품사 정보 및 한국어 문맥 통계 정보 등의 다양한 지식을 사용하여 영어 명사 어휘의 대역어를 올바로 선택하는 방안을 제공한다. 동사구 패턴은 사전과 코퍼스를 사용하여 구축되었으며, 의미 벡터는 영어 어휘가 특정 한국어 어휘로 번역될 때 공기하는 정보들의 조건부 확률을 나타낸다. 한국어 문맥 통계 정보는 한국어 코퍼스로부터 추출된 N-그램 정보를 나타내며, 품사 공기 정보는 대역어 선택 모호성을 지니는 영어 어휘와 통계적으로 깊은 관련성을 지니는 품사를 나타낸다. 마지막으로 본 논문에서 제안한 대역어 선택 모호성 해소 방안을 평가하기 위한 실험을 수행하였으며, 실험 결과, 제안하는 방법이 기존의 방법보다 성능이 좋다는 것을 확인할 수 있었다.

  • PDF

`단어-의미 의미-단어` 관계에 기반한 번역어 선택 (Translation Disambiguation Based on 'Word-to-Sense and Sense-to-Word' Relationship)

  • 이현아
    • 정보처리학회논문지B
    • /
    • 제13B권1호
    • /
    • pp.71-76
    • /
    • 2006
  • 기계번역에서 올바른 번역 문장을 구성하기 위해서는 원시 문장의 의미를 올바르게 표현하면서 자연스러운 목적 문장을 구성하는 번역어를 선택해야 한다. 본 논문에서는 '단어-의미 의미-단어' 관계, 즉 원시언어의 한 단어는 하나 이상의 의미를 가지고 각 의미는 각기 다른 목적언어 단어로 표현된다는 점에 기반하여, 원시 단어의 의미 분별과 목적 단어 선택을 결합하여 번역어를 선택하는 방식을 제안한다. 기존의 번역방식은 원시 단어에 대한 목적단어를 직접 선택하는 '단어-단어' 관계에 기반하고 있기 때문에, 원시언어를 목적 언어로 직접 대응시키기 위한 지식을 필요로 하여 지식 획득에 어려움이 있었다. 본 논문의 방식에서는 원시 단어의 의미 분별과 목적 언어의 단어 선택의 결합을 통해 번역어를 선택함으로써, 손쉽게 획득할 수 있는 원시 언어와 목적 언어 각각의 지식원에서 번역어 선택을 위한 지식을 자동으로 추출할 수 있다. 또한 원시 언어의 의미와 목적 언어의 쓰임새를 모두 반영하여 충실도와 이해도를 모두 만족시키는 보다 정확한 번역어를 선택할 수 있다.

영한번역 시스템에서 연어 사용에 의한 실용적인 대역어 선택 (Practical Target Word Selection Using Collocation in English to Korean Machine Translation)

  • 김성묵
    • 한국산업정보학회논문지
    • /
    • 제5권2호
    • /
    • pp.56-61
    • /
    • 2000
  • 기계번역시스템에서 번역의 우수성은 중의성이 심한 동사의 대역어 선택에 좌우된다. 동사의 의미분별은 함께 어울려 사용되는 연어들에 의해 해소될 수 있지만, 이러한 연어들을 획득하기에는 많은 어려움과 비용의 문제가 발생한다. 이에 따라 기존의 많은 연구 중에서 실용성을 검토해 볼 필요가 있다. 본 논문에서는 영한번역시스템의 성능 향상을 위해 기존에 획득된 연어에 최소한의 명사 의미자질을 구축하여 계산한 의미거리(Semantic Distance)에 의한 실용적인 대역어 선택 방법을 기술하고자 한다.

  • PDF

질문대답 아카이브에서 어휘 연관성을 이용한 질문 분류 (Question Classification Based on Word Association for Question and Answer Archives)

  • 김설영;이경순
    • 정보처리학회논문지B
    • /
    • 제17B권4호
    • /
    • pp.327-332
    • /
    • 2010
  • 보통 두 세 개의 어휘로 구성된 질문 분류에서 어휘의 다양한 표현으로 인한 어휘 불일치문제는 성능 저하의 주요 원인이다. 따라서 질문 분류에서 어휘 사이의 연관성을 반영하는 것이 필수적이다. 본 논문에서는 같은 범주의 질문-질문 쌍들에 대해 계산한 어휘 번역확률을 번역기반 언어모델에 반영하여 질문을 분류하는 방법을 제안한다. 실험에서 야후!앤써 질문대답 아카이브를 이용해서 전체 질문-대답 쌍들에 대해서 번역확률을 계산하는 것보다 같은 범주에 속하는 질문-질문 쌍들에 대해서 번역확률을 계산하는 것이 질문 분류에서 더 좋은 번역확률인 것을 증명한다.

영한 기계 번역에서 미가공 텍스트 데이터를 이용한 대역어 선택 중의성 해소 (Target Word Selection Disambiguation using Untagged Text Data in English-Korean Machine Translation)

  • 김유섭;장정호
    • 정보처리학회논문지B
    • /
    • 제11B권6호
    • /
    • pp.749-758
    • /
    • 2004
  • 본 논문에서는 미가공 말뭉치 데이터를 활용하여 영한 기계번역 시스템의 대역어 선택 시 발생하는 중의성을 해소하는 방법을 제안한다. 이를 위하여 은닉 의미 분석(Latent Semantic Analysis : LSA)과 확률적 은닉 의미 분석(Probabilistic LSA : PLSA)을 적용한다. 이 두 기법은 텍스트 문단과 같은 문맥 정보가 주어졌을 때, 이 문맥이 내포하고 있는 복잡한 의미 구조를 표현할 수 있다 본 논문에서는 이들을 사용하여 언어적인 의미 지식(Semantic Knowledge)을 구축하였으며 이 지식은 결국 영한 기계번역에서의 대역어 선택 시 발생하는 중의성을 해소하기 위하여 단어간 의미 유사도를 추정하는데 사용된다. 또한 대역어 선택을 위해서는 미리 사전에 저장된 문법 관계를 활용하여야 한다. 본 논문에서는 이러한 대역어 선택 시 발생하는 데이터 희소성 문제를 해소하기 위하여 k-최근점 학습 알고리즘을 사용한다. 그리고 위의 두 모델을 활용하여 k-최근점 학습에서 필요한 예제 간 거리를 추정하였다. 실험에서는, 두 기법에서의 은닉 의미 공간을 구성하기 위하여 TREC 데이터(AP news)론 활용하였고, 대역어 선택의 정확도를 평가하기 위하여 Wall Street Journal 말뭉치를 사용하였다. 그리고 은닉 의미 분석을 통하여 대역어 선택의 정확성이 디폴트 의미 선택과 비교하여 약 10% 향상되었으며 PLSA가 LSA보다 근소하게 더 좋은 성능을 보였다. 또한 은닉 공간에서의 축소된 벡터의 차원수와 k-최근점 학습에서의 k값이 대역어 선택의 정확도에 미치는 영향을 대역어 선택 정확도와의 상관관계를 계산함으로써 검증하였다.젝트의 성격에 맞도록 필요한 조정만을 통하여 품질보증 프로세스를 확립할 수 있다. 개발 된 패키지의 효율적인 활용이 내조직의 소프트웨어 품질보증 구축에 투입되는 공수 및 어려움을 줄일 것으로 기대된다.도가 증가할 때 구기자 열수 추출 농축액은 $1.6182{\sim}2.0543$, 혼합구기자 열수 추출 농축액은 $1.7057{\sim}2.1462{\times}10^7\;J/kg{\cdot}mol$로 증가하였다. 이와 같이 구기자 열수 추출 농축액과 혼합구기자 열수 추출 농축액의 리올리지적 특성에 큰 차이를 나타내지는 않았다. security simultaneously.% 첨가시 pH 5.0, 7.0 및 8.0에서 각각 대조구의 57, 413 및 315% 증진되었다. 거품의 열안정성은 15분 whipping시, pH 4.0(대조구, 30.2%) 및 5.0(대조구, 23.7%)에서 각각 $0{\sim}38.0$$0{\sim}57.0%$이었고 pH 7.0(대조구, 39.6%) 및 8.0(대조구, 43.6%)에서 각각 $0{\sim}59.4$$36.6{\sim}58.4%$이었으며 sodium alginate 첨가시가 가장 양호하였다. 전체적으로 보아 거품안정성이 높은 것은 열안정성도 높은 경향이며, 표면장력이 낮으면 거품형성능이 높아지고, 비점도가 높으면 거품안정성 및 열안정성이 높아지는 경향이 있었다.protocol.eractions between application agents that are developed using different

잠재의미구조 기반 단어 유사도에 의한 역어 선택 (Target Word Selection using Word Similarity based on Latent Semantic Structure in English-Korean Machine Translation)

  • 장정호;김유섭;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.502-504
    • /
    • 2002
  • 본 논문에서는 대량의 말뭉치에서 추출된 잠재의미에 기반하여 단어간 유사도를 측정하고 이를 영한 기계 번역에서의 역어선택에 적용한다. 잠재의미 추출을 위해서는 latent semantic analysis(LSA)와 probabilistic LSA(PLSA)를 이용한다. 주어진 단어의 역어 선택시 기본적으로 연어(collocation) 사전을 검색하고, 미등록 단어의 경우 등재된 단어 중 해당 단어와 유사도가 높은 항목의 정보를 활용하며 이 때 $textsc{k}$-최근접 이웃 방법이 이용된다. 단어들간의 유사도 계산은 잠재의미 공간상에서 이루어진다. 실험에서, 연어사전만 이용하였을 경우보다 최고 15%의 성능 향상을 보였으며, PLSA에 기반한 방법이 LSA에 의한 방법보다 역어선택 성능 면에서 약간 더 우수하였다.

  • PDF

두단계 대역어선택 방식을 이용한 구단위 패턴기반 한영 기계번역 시스템 (Phrase-Pattern-based Korean-to-English Machine Translation System using Two Level Word Selection)

  • 김정재;박준식;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1999년도 제11회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.209-214
    • /
    • 1999
  • 패턴기반기계번역방식은 원시언어패턴과 그에 대한 대역언어패턴들의 쌍을 이용하여 구문분석과 변환을 수행하는 기계번역방식이다. 패턴기반 기계번역방식은 번역할 때 발생하는 애매성을 해소하기 위해 패턴의 길이를 문장단위까지 늘이기 때문에, 패턴의 수가 급증하는 문제점을 가진다. 본 논문에서는 패턴의 단위를 구단위로 한정시킬 때 발생하는 애매성을 해소하는 방법으로 시소러스를 기반으로 한 두단계 대역어 선택 방식을 제안함으로써 효과적으로 애매성을 감소시키면서 패턴의 길이를 줄이는 모델을 제시한다. 두단계 대역어 선택 방식은 원시언어의 한 패턴에 대해 여러 가능한 목적언어의 대역패턴들이 있을 때, 첫 번째 단계에서는 원시언어 내에서의 제약조건에 맞는 몇가지 대역패턴들을 선택하고, 두번째 단계에서는 목적언어 내에서의 제약조건에 가장 적합한 하나의 대역패턴을 선택하는 방식이다. 또한 본 논문에서는 이와 같은 모델에서 패턴의 수가 코퍼스의 증가에 따른 수렴가능성을 논한다.

  • PDF