• Title/Summary/Keyword: translation selection

Search Result 72, Processing Time 0.02 seconds

Conserved COG Pathways and Genes of 122 Species of Archaea (고세균 122종의 보존적 COG pathways와 유전자)

  • Dong-Geun Lee ;Sang-Hyeon Lee
    • Journal of Life Science
    • /
    • v.33 no.11
    • /
    • pp.944-949
    • /
    • 2023
  • The purpose of this study was to identify conserved metabolic pathways and conserved genes in 122 archaeal species. Using the Clusters of Orthologous Groups of Proteins (COG) database of conserved genes, we analyzed whether 122 species had 63 COG metabolic pathways, the 822 COGs that compose them, and a total of 4,877 COGs. Archaeal ribosomal proteins were the most conserved in metabolic pathways. 46 COGs in seven COG pathways among 63 COG pathways and 20 COGs in others were conserved in 122 species. Some genes involved in cell wall and extracellular matrix synthesis, replication, transcription, translation, and protein metabolism were common to all 122 species. When the distance value of the phylogenetic tree was analyzed at the phylum level or class level, the average was the lowest at the class Halobacteria of the phylum Euryarchaeota. Standard deviation was high for the class Nitosospharia of the phylum Thaumarchaeota, the unclassified members of phylum Thaumarchaeota, the class Halobacteria of the phylum Euryarchaeota, the class Thermoprotei of the phylum Crenarchaeota, and other archaea. Furthermore, the phylogenetic tree analysis revealed six commonalities. The results of this study, along with data on conserved genes, could be used for drug development and gene selection for strain improvement.

A prognosis discovering lethal-related genes in plants for target identification and inhibitor design (식물 치사관련 유전자를 이용하는 신규 제초제 작용점 탐색 및 조절물질 개발동향)

  • Hwang, I.T.;Lee, D.H.;Choi, J.S.;Kim, T.J.;Kim, B.T.;Park, Y.S.;Cho, K.Y.
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.3
    • /
    • pp.1-11
    • /
    • 2001
  • New technologies will have a large impact on the discovery of new herbicide site of action. Genomics, combinatorial chemistry, and bioinformatics help take advantage of serendipity through tile sequencing of huge numbers of genes or the synthesis of large numbers of chemical compounds. There are approximately $10^{30}\;to\;10^{50}$ possible molecules in molecular space of which only a fraction have been synthesized. Combining this potential with having access to 50,000 plant genes in the future elevates tile probability of discovering flew herbicidal site of actions. If 0.1, 1.0 or 10% of total genes in a typical plant are valid for herbicide target, a plant with 50,000 genes would provide about 50, 500, and 5,000 targets, respectively. However, only 11 herbicide targets have been identified and commercialized. The successful design of novel herbicides depends on careful consideration of a number of factors including target enzyme selections and validations, inhibitor designs, and the metabolic fates. Biochemical information can be used to identify enzymes which produce lethal phenotypes. The identification of a lethal target site is an important step to this approach. An examination of the characteristics of known targets provides of crucial insight as to the definition of a lethal target. Recently, antisense RNA suppression of an enzyme translation has been used to determine the genes required for toxicity and offers a strategy for identifying lethal target sites. After the identification of a lethal target, detailed knowledge such as the enzyme kinetics and the protein structure may be used to design potent inhibitors. Various types of inhibitors may be designed for a given enzyme. Strategies for the selection of new enzyme targets giving the desired physiological response upon partial inhibition include identification of chemical leads, lethal mutants and the use of antisense technology. Enzyme inhibitors having agrochemical utility can be categorized into six major groups: ground-state analogues, group specific reagents, affinity labels, suicide substrates, reaction intermediate analogues, and extraneous site inhibitors. In this review, examples of each category, and their advantages and disadvantages, will be discussed. The target identification and construction of a potent inhibitor, in itself, may not lead to develop an effective herbicide. The desired in vivo activity, uptake and translocation, and metabolism of the inhibitor should be studied in detail to assess the full potential of the target. Strategies for delivery of the compound to the target enzyme and avoidance of premature detoxification may include a proherbicidal approach, especially when inhibitors are highly charged or when selective detoxification or activation can be exploited. Utilization of differences in detoxification or activation between weeds and crops may lead to enhance selectivity. Without a full appreciation of each of these facets of herbicide design, the chances for success with the target or enzyme-driven approach are reduced.

  • PDF