• Title/Summary/Keyword: transient spark

Search Result 30, Processing Time 0.038 seconds

An Experimental Study of Cyclic Combustion Characteristics at Starting and Idling Phase on Spark Ignition Engine (SI 엔진의 시동 및 아이들 구간에서의 점화시기에 따른 싸이클별 연소현상에 관한 실험적 연구)

  • Choi, Seong-Won;Choi, Kwan-Hee;Myung, Cha-Lee;Park, Sim-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3317-3322
    • /
    • 2007
  • THC(Total Hydrocarbon) emissions during cold start and warm-up phase constitute the majority of THC emissions during the FTP-75 mode. As the basic approach to improve the emission performance of Gasoline engine during transient phase, the effect of spark timing retard from MBT on THC emission characteristics is studied by engine test using a Fast response Flame Ionization Detector(FFID). A cyclic analysis of the combustion process shows that high THC emissions are produced first few cycles during the transient phase. This paper presents the results of engine performance and emission of Gasoline engine with various spark timing. consequently, This paper was focused on the combustion phenomena with various spark timing during transient phase which was analyzed by Fast response Flame Ionization Detector (FFID) equipment to measure the cyclic THC emission characteristics.

  • PDF

Measurement and Analysis of Knock for Rapid Throttle Opening in SI Engines (가솔린 엔진에서 급가속 운전시 노킹 측정 및 분석)

  • 이종화;박경석;김현용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.28-35
    • /
    • 1999
  • In this study, investigation of transient knock characteristics in a spark-ignition engine has been carried out. The universal knock threshold values were found by a DFDD method and a NSDBP method which is a non-dimensional version of the SDBP method. Also modified NSDBP method could be used for transient knock detection. In a commercial ECU , spark timing was retarded from the steady -state spark timing during rapid throttle opening to avoid uncomfortable feeling and knock. Knock usually occurred just after the start of rapid throttle opening when spark timing was set, as values for the steady state condition. We found that air/fuel ratio deeply involved with the knock during transient condition. Due to the difference of initial heat release rate, knock occurred more easily at rich air/fuel ratio than at lean air/fuel ratio.

  • PDF

The Simulation of Fuel Economy Considering Transient Control Condition in a Gasoline Engine Vehicle (가솔린 엔진 장착 차량에서 과도구간 제어특성을 고려한 연비주행모드 시뮬레이션)

  • Jung, Yeon-Sik;Park, Jin-Il;Lee, Jong-Hwa;Park, Kyoung-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.106-112
    • /
    • 2008
  • Modern vehicles require a high degree of refinement, including good drive ability to meet customer demands. Vehicle drive ability, which becomes a key decisive factor for marketability, is affected by many parameters such as engine control and the dynamic characteristics in drive lines. This paper focuses on the simulation of FTP-75 mode which is considered with spark timing control on transient condition. The acceleration is the most important factor for vehicle fuel economy. The retard of spark timing increases in proportion to acceleration. Likewise, bsfc(break specific fuel consumption) which is affected by spark timing also increases in proportion to acceleration. The result of simulation considered transient condition shows 0.3% of error comparing with a test on chassis-dynamometer.

Transient Spark 방전에 대한 전기.광학적 특성 고찰

  • Lee, Je-Hyeon;Lee, Gi-Yung;Kim, Dong-Hyeon;Lee, Hae-Jun;Lee, Ho-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.527-527
    • /
    • 2013
  • 현재 산업에서 상압플라즈마는 생물의학, 표면처리, 용접 및 절단, 화학적 오염제거 등 여러 분야에서 각광받고 있으며 그 잠재력 또한 매우 크다. 통상적으로 글로우 방전은 생물의학, 표면처리, 화학적 오염제거 등에 주로 쓰이고 아크 방전은 용접 및 절단에 응용된다. 이처럼 상압플라즈마는 여러 가지 방전으로 분류되고 그 특성에 맞게 응용되고 있는데 이러한 산업 여러 분야에 적절히 응용하기 위해서는 이에 대한 진단과 특성 분석이 선행적으로 이루어져야 한다. 본 연구에서는 침 대 면 전극을 가진 상압방전장치에서 스트리머로부터 스파크방전으로의 전이과정이 연구되었다. 전극간격, 주파수, 전압, 구동회로의 전류제한 조건을 가변함에 따라 스파크방전으로 전이되는 방전조건과 안정적인 글로우 방전이 유지되는 조건이 어떻게 달라지는지 조사되었다. 또한 방전전류 측정 및 ICCD 영상분석을 통해 Transient spark의 self-pulsing 조건과 주파수변화 특성을 고찰하였다.

  • PDF

Individual Cylinder Spark Advance Control Using Cylinder Pressure in SI Engines

  • Park, Seungbum;Myoungho Sunwoo;Paljoo Yoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.160.2-160
    • /
    • 2001
  • This paper presents an individual cylinder spark advance control strategy based upon the location of peak pressure (LPP) in spark ignition engines using artificial neural networks. The LPP is estimated using a feedforward multi-layer perceptron network (MLPN), which needs only five samples of output voltage from the cylinder pressure sensor. The cyclic variation of LPP restricts the gain of the feedback controller, and results in poor regulation performance during the transient operation of the engine. The transient performance of the spark advance controller is improved by adding a feedforward controller which reflects the abrupt changes of the engine operating conditions such as engine speed and manifold absolute pressure (MAP)...

  • PDF

Experimental study on the heat flux and heat transfer coefficient in a spark ignition engine (스파크 점화기관의 열유속 및 열전달 계수에 대한 실험적 연구)

  • Han, Seong-Bin;Gwon, Yeong-Jik;Lee, Jeong-Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1466-1474
    • /
    • 1997
  • In order to design and develop a spark ignition engine, many studies must be preceded about the characteristics of thermal flow. For measurement of transient wall temperature thin film thermocouples of Bendersky type were manufactured and these probes were fixed into the wall of combustion chamber. Surface wall temperatures were measured in experiments of various engine speeds. Transient heat fluxes were calculated from the wall temperature measurements. Pressure was measured from combustion chamber using pressure transducer and gas temperatures were calculated using the state equation of ideal gas. And instantaneous heat transfer coefficients were obtained. It will be the basic data for the formulae of instantaneous heat transfer coefficients.

SI Engine Closed-loop Spark Advance Control Using Cylinder Pressure (실린더 압력을 이용한 SI엔진의 페루프 점화시기 제어에 관한 연구)

  • Park, Seung-Beom;Yun, Pal-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2361-2370
    • /
    • 2000
  • The introduction of inexpensive cylinder pressure sensors provides new opportunities for precise engine control. This paper presents a control strategy of spark advance based upon cylinder pressure of spark ignition engines. A location of peak pressure(LPP) is the major parameter for controlling the spark timing, and also the UP is estimated, using a multi-layer feedforward neural network, which needs only five pressure sensor output voltage samples at -40˚, -20˚, 0˚, 20˚, 40˚ after top dead center. The neural network plays an important role in mitigating the A/D conversion load of an electronic engine controller by increasing the sampling interval from 10 crank angle(CA) to 20˚ CA. A proposed control algorithm does not need a sensor calibration and pegging(bias calculation) procedure because the neural network estimates the UP from the raw sensor output voltage. The estimated LPP can be regarded as a good index for combustion phasing, and can also be used as an MBT control parameter. The feasibility of this methodology is closely examined through steady and transient engine operations to control individual cylinder spark advance. The experimental results have revealed a favorable agreement of individual cylinder optimal combustion phasing.

Theoretical Prediction Method on Occurrence of Spark Knock (스파크노크 발생에 대한 이론적 예측방법)

  • 이내현;오영일;이성열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3326-3334
    • /
    • 1994
  • To theoretically predict knock occurrence in S. I. engine as a function of engine design and operating parameters, transient local temperature and pressure, mixture density of flame front in combustion period are calculated. We next determined normal combustion period and auto ignition period of end gas using the prediction method on occurrence of spark knock which we suggested. We predict knock occurrence in S. I. engine by comparing consecutively normal combustion period with the auto ignition period of end gas in combustion period. Engine design and operating parameters such as compression ratio, engine speed, spark timing, inlet temperature and pressure are taken into account in this calculations. The predicted result are well matched with the experimental results in turbocharged engine. Therefore, this method will provide the systematic guideline for designing engines in view of knocking limits.

IN-CYLINDER FLOW ANALYSIS USING WAVELET ANALYSIS

  • Park, D.;Sullivan, P.E.;Wallace, J.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.289-294
    • /
    • 2006
  • Better fundamental understanding of the interactions between the in-cylinder flows and combustion process is an important requirement for further improvement in the fuel economy and emissions of internal combustion(IC) engines. Flow near a spark plug at the time of ignition plays an important role for early flame kernel development(EFKD). Velocity data measurements in this study were made with a two-component laser Doppler velocimetry(LDV) near a spark plug in a single cylinder optical spark ignition(SI) engine with a heart-shaped combustion chamber. LDV velocity data were collected on an individual cycle basis under wide-open motored conditions with an engine speed of 1,000rpm. This study examines and compares the flow fields as interpreted through ensemble, cyclic and discrete wavelet transformation(DWT) analysis. The energy distributions in the non-stationary engine flows are also investigated over crank angle phase and frequency through continuous wavelet transformation(CWT) for a position near a spark plug. Wavelet analysis is appropriate for analyzing the flow fields in engines because it gives information about the transient events in a time and frequency plane. The results of CWT analysis are provided and compared with the mean flows of DWT first decomposition level for all cycles at a position. Low frequency high energy found with CWT corresponds well with the peak locations of the mean velocity. The high frequency flows caused by the intake jet gradually decay as the piston approaches the bottom dead center(BDC).

Transient Liquid Phase Bonding of Ni-Cr Heat Resisted Cast Steel (Ni-Cr계 내열주강의 천이액상 접합)

  • 권영순;신철균;김현식;김환태;김지순;석명진
    • Journal of Powder Materials
    • /
    • v.9 no.3
    • /
    • pp.189-198
    • /
    • 2002
  • In this work, transient liquid phase (TLP) bonding of Ni-Cr heat resisted cast alloy (HP) was investigated. And also the behaviors of the solid particles distributed in the interlayer during TLP bonding were investigated. The MBF-60 and solid particles (Ni, Fe, and $Al_2O_3$ powders respectively) added MBF-60 which will be a liquid phase coexisting with solid particles at the bonding temperature were used as insert metal. The effective and sound bonding was possible by spark plasma sinter-bonding due to the differences of electric resistance between base metal and liquid insert layer which creates high temperature region. During the isothermal solidification, $Al_2O_3$ particles and solid particles of liquid phase sintered insert metal have shown no growth, while Ni and Fe particles grow rapidly. In this TLP bonding using the MBF-60 and distributed Fe, Ni particles as insert materials, the whole isothermal solidification process was dominated by the growth rate of the solid particles distributed in the interlayer.