• 제목/요약/키워드: transient or unsteady flow

검색결과 19건 처리시간 0.023초

PIV를 이용한 3차원 파형관 내부 유동장의 실험적 연구 (An Experimental Investigation on Flow Field in a Pipe with Sinusoidally Wavy Surface by PIV)

  • 김성균
    • 설비공학논문집
    • /
    • 제16권4호
    • /
    • pp.368-373
    • /
    • 2004
  • A flow field in a passage with periodically converging-diverging cross-section is investigated experimentally by PIV measurement. A tube with a sinusoidally wavy cross section is one of several devices employed for enhancing the heat and mass transfer efficiency due to turbulence promotion and unsteady vortical motion. While the numerical flow visualization results have been limited to the fully developed cases, existing experimental results of this flow were simple qualitative ones by smoke or dye streak test. Therefore, the main purpose of this study is to produce quantitative flow data for fully developed and transient flow regime by the Correlation Based Correction PIV (CBC PIV) and to conjecture the analogy between flow characteristics and heat transfer enhancement with low pumping power. Another purpose of this paper is to examine the onset position of the transition and the global mixing, which results in transfer enhancement. At Re=2000, evidences of the global mixing are captured at 2.5 wavy module through the variation of RMS values and instantaneous velocity plot.

2차원과 3차원에서의 비정렬 동적 적응격자 형성법에 관한 연구 (A Dynamic Adaptation Technique on 2-D and 3-D Unstructured Meshes)

  • 박영민;오우섭;권오준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 춘계 학술대회논문집
    • /
    • pp.146-152
    • /
    • 2000
  • Two and Three dimensional dynamic adaptation code is developed for transient computations. This code involves mesh refinement and coarsening to either add points in high gradient regions of flow or remove points where they are not needed, for high spatial accuracy. Temporary cell algorithm is used to maintain the original grid quality. To show the assessment of the accuracy and efficiency, two dimensional study and unsteady flows are computed. Also, three dimensional steady computations are made to assess the refinement using temporary cell algorithm. The result shows the high spatial accuracy primarily in discontinuity regions in steady and unsteady computation.

  • PDF

분류층 가스화기 벽면의 슬래그거동에 대한 비정상해석 모델 개발 (Development of transient-state simulation model for slag flow on the wall of an entrained coal gasifier)

  • 김무경;예인수;류창국
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.197-200
    • /
    • 2015
  • Understanding the slag flow behavior is important in an entrained coal gasifier for its influence of ash discharge and wall heat transfer rate. This study presents a new model to predict the transient behavior of the liquid and solid slag layers. Unlike the previous steady-state model, the solid slag layer was included in solving the governing equations in order to identify the temporal and spatial transformation between the solid-liquid slag, rather than treating the solid region as a boundary condition of the liquid layer. The performance of the new model was evaluated for changes in the slag deposition rate (${\pm}10%$) and gas temperature (${\pm}50K$) in a simple cylindrical gasifier. The results show that the characteristic times to reach a new steady-state ranged between 80 s to 180s for the changes in the two parameters. Because the characteristic times of the gasifier temperature and slag deposition rate by changes in the coal type and/or operating conditions would be almost instantaneous, the time-scale for the slag thickness at the bottom of the gasifier to stabilize was much larger.

  • PDF

Rotor dynamic analysis of a tidal turbine considering fluid-structure interaction under shear flow and waves

  • Lass, Andre;Schilling, Matti;Kumar, Jitendra;Wurm, Frank-Hendrik
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.154-164
    • /
    • 2019
  • A rotor dynamic analysis is mandatory for stability and design optimization of submerged propellers and turbines. An accurate simulation requires a proper consideration of fluid-induced reaction forces. This paper presents a bi-directional coupling of a bond graph method solver and an unsteady vortex lattice method solver where the former is used to model the rotor dynamics of the power train and the latter is used to predict transient hydrodynamic forces. Due to solver coupling, determination of hydrodynamic coefficients is obsolete and added mass effects are considered automatically. Additionally, power grid and structural faults like grid fluctuations, eccentricity or failure could be investigated using the same model. In this research work a fast, time resolved dynamic simulation of the complete power train is conducted. As an example, the rotor dynamics of a tidal stream turbine is investigated under two inflow conditions: I - shear flow, II - shear flow + water waves.

수격작용(워터햄머)의 해석에 관한 연구 (Study on Waterhammer Analysis)

  • 남선우
    • 물과 미래
    • /
    • 제12권2호
    • /
    • pp.49-55
    • /
    • 1979
  • 본 연구는 관수로내의 부정류 즉 펌푸모터의 시동, 정지 및 발브 조절시에 압력관수로에 나타나는 급변류의 현상, 특히 수격작용의 해석을 Computer에 의해 자동해석하는 방법을 강구하였다. 따라서 사용되는 관수로가 펌푸, 관망, 터널, 조압수조, 분기관, 저수지, 폐단관 및 발브장치를 갖는 일련의 관수로내에 일어나서 전자계산기를 사용하면 송수 또는 배수관로 설계에 있어 설계자의 시간과 노력을 감소하고 정확한 결과를 얻을 수 있는 장점이 있다.

  • PDF

지하저장공동 주변 불연속 암반에서의 가스-물 천이유동해석을 위한 개별균열 유동모델의 개발 및 응용 (Development and Its Application of a Discrete Fracture Flow Model for the Analysis of Gas-Water Transient Flow in Fractured Rock Masses Around Storage Cavern)

  • 나승훈;성원모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.705-712
    • /
    • 2000
  • The fluid generally flows through fractures in crystalline rocks where most of underground storage facilities are constructed because of their low hydraulic conductivities. The fractured rock is better to be conceptualized with a discrete fracture concept, rather continuum approach. In the aspect of fluid flow in underground, the simultaneous flow of groundwater and gas should be considered in the cases of generation and leakage of gas in nuclear waste disposal facilities, air sparging process and soil vapor extraction for eliminating contaminants in soil or rock pore, and pneumatic fracturing for the improvement of permeability of rock mass. For the purpose of appropriate analysis of groundwater-gas flow, this study presents an unsteady-state multi-phase FEM fracture network simulator. Numerical simulation has been also conducted to investigate the hydraulic head distribution and air tightness around Ulsan LPG storage cavern. The recorded hydraulic head at the observation well Y was -5 to -10 m. From the results obtained by the developed model, it shows that the discrete fracture model yielded hydraulic head of -10 m, whereas great discrepancy with the field data was observed in the case of equivalent continuum modeling. The air tightness of individual fractures around cavern was examined according to two different operating pressures and as a result, only several numbers of fractures neighboring the cavern did not satisfy the criteria of air tightness at 882 kPa of cavern pressure. In the meantime, when operating pressure is 710.5 kPa, the most areas did not satisfy air tightness criteria. Finally, in the case of gas leaking from cavern to the surrounding rocks, the resulted hydraulic head and flowing pattern was changed and, therefore, gas was leaked out from the cavern ceiling and groundwater was flowed into the cavern through the walls.

  • PDF

Fluid-Structure Interaction Study on Diffuser Pump With a Two-Way Coupling Method

  • Xu, Huan;Liu, Houlin;Tan, Minggao;Cui, Jianbao
    • International Journal of Fluid Machinery and Systems
    • /
    • 제6권2호
    • /
    • pp.87-93
    • /
    • 2013
  • In order to study the effect of the fluid-structure interaction (FSI) on the simulation results, the external characteristics and internal flow features of a diffuser pump were analyzed with a two-way flow solid coupling method. And the static and dynamic structure analysis of the blade was also caculated with the FEA method. The steady flow field is based on Reynolds Averaged N-S equations with standard $k-{\varepsilon}$ turbulent model, the unsteady flow field is based on the large eddy simulation, and the structure response is based on elastic transient structural dynamic equation. The results showed that the effect of FSI on the head prediction based on CFD really exists. At the same radius, the van mises stress on the nodes closed shroud and hub was larger than other nodes. A large deformation region existed near inlet side at the middle of blades. The strength of impeller satisfied the strength requirement with static stress analysis based on the fourth strength theory. The dynamic stress varied periodically with the impeller rotating. It was also found that the fundamental frequency of the dynamic stress is the rotating frequency and its harmonic frequency. The frequency of maximum stress amplitude at node 1626 was 7 times of the rotating frequency. The frequency of maximum stress amplitude at node 2328 was 14 times of the rotating frequency. No matter strength failure or fatigue failure, the root of blades near shroud is the key region to analyse.

수면 중 호흡의 조절 (Control of Ventilation during Sleep)

  • 김우성
    • 수면정신생리
    • /
    • 제6권1호
    • /
    • pp.19-25
    • /
    • 1999
  • Sleep alters both breathing pattern and the ventilatory responses to external stimuli. These changes during sleep permit the development or aggravation of sleep-related hypoxemia in patients with respiratory disease and contribute to the pathogenesis of apneas in patients with the sleep apnea syndrome. Fundamental effects of sleep on the ventilatory control system are 1) removal of wakefulness input to the upper airway leading to the increase in upper airway resistance, 2) loss of wakefulness drive to the respiratory pump, 3) compromise of protective respiratory reflexes, and 4) additional sleep-induced compromise of ventilatory control initiated by reduced functional residual capacity on supine position assumed in sleep, decreased $CO_2$ production during sleep, and increased cerebral blood flow in especially rapid eye movement(REM) sleep. These effects resulted in periodic breathing during unsteady non-rapid eye movement(NREM) sleep even in normal subjects, regular but low ventilation during steady NREM sleep, and irregular breathing during REM sleep. Sleep-induced breathing instabilities are divided due primarily to transient increase in upper airway resistance and those that involve overshoots and undershoots in neural feedback mechanisms regulating the timing and/or amplitude of respiratory output. Following ventilatory overshoots, breathing stability will be maintained if excitatory short-term potentiation is the prevailing influence. On the other hand, apnea and hypopnea will occur if inhibitory mechanisms dominate following the ventilatory overshoot. These inhibitory mechanisms include 1) hypocapnia, 2) inhibitory effect from lung stretch, 3) baroreceptor stimulation, 4) upper airway mechanoreceptor reflexes, 5) central depression by hypoxia, and 6) central system inertia. While the respiratory control system functions well during wakefulness, the control of breathing is commonly disrupted during sleep. These changes in respiratory control resulting in breathing instability during sleep are related with the pathophysiologic mechanisms of obstructive and/or central apnea, and have the therapeutic implications for nocturnal hypoventilation in patients with chronic obstructive pulmonary disease or alveolar hypoventilation syndrome.

  • PDF

Comparison of RANS, URANS, SAS and IDDES for the prediction of train crosswind characteristics

  • Xiao-Shuai Huo;Tang-Hong Liu;Zheng-Wei Chen;Wen-Hui Li;Hong-Rui Gao;Bin Xu
    • Wind and Structures
    • /
    • 제37권4호
    • /
    • pp.303-314
    • /
    • 2023
  • In this study, two steady RANS turbulence models (SST k-ω and Realizable k-ε) and four unsteady turbulence models (URANS SST k-ω and Realizable k-ε, SST-SAS, and SST-IDDES) are evaluated with respect to their capacity to predict crosswind characteristics on high-speed trains (HSTs). All of the numerical simulations are compared with the wind tunnel values and LES results to ensure the accuracy of each turbulence model. Specifically, the surface pressure distributions, time-averaged aerodynamic coefficients, flow fields, and computational cost are studied to determine the suitability of different models. Results suggest that the predictions of the pressure distributions and aerodynamic forces obtained from the steady and transient RANS models are almost the same. In particular, both SAS and IDDES exhibits similar predictions with wind tunnel test and LES, therefore, the SAS model is considered an attractive alternative for IDDES or LES in the crosswind study of trains. In addition, if the computational cost needs to be significantly reduced, the RANS SST k-ω model is shown to provide relatively reasonable results for the surface pressures and aerodynamic forces. As a result, the RANS SST k-ω model might be the most appropriate option for the expensive aerodynamic optimizations of trains using machine learning (ML) techniques because it balances solution accuracy and resource consumption.