• 제목/요약/키워드: transient gust

검색결과 6건 처리시간 0.023초

Digital Redesign of Gust Load Alleviation System using Control Surface

  • Tak, Hyo-Sung;Ha, Cheol-Keun;Lee, Sang-Wook;Kim, Tae-Uk;Hwang, In-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.675-679
    • /
    • 2005
  • This paper deals with the problem of gust load alleviation in active control for the case that aeroelasticity takes place due to interaction between wing structure and aerodynamics on wing when aircraft meets gust during flight. Aeroservoelasticity model includes wing structure modeled in FEM, unsteady aerodynamics in minimum state approximate method, and models of actuator and sensors in state space. Based on this augmented model, digitally redesigned gust load alleviation system is designed in sampled-data control technique. From numerical simulation, this digital control system is effective to gust load on aircraft wing, which is shown in transient responses and PSD analysis to random gust inputs.

  • PDF

EDISON Co-rotational Plane Beam Transient analysis solver를 이용한 위험 Gust profile 역-추적 알고리즘 개발

  • 정지섭;김세일;신상준
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제6회(2017년)
    • /
    • pp.259-269
    • /
    • 2017
  • Gust load is a very important load factor in designing various structures of an aircraft and judging its stability. This is because the blast effect on the aircraft in operation increases the risk of damage to the structure of the aircraft and causes a negative impact such as shortening the fatigue life by generating vibration. Particularly in the case of wing, a change in angle of attack is caused by gust load, and an additional lift acts on the wing, thereby being exposed to various excitational environments. Severe structural damage to the aircraft may occur if the natural frequencies of the aircraft wing are close to or coincident with the frequencies of the gust load applied to the wing. Recent trends of research include flight dynamics analysis considering discontinuous gusts or structural optimization of the blades under gust load. A number of studies have been conducted to interpret gust load response in consideration of irregularities in gusts. In this paper, we tried to imagine the situation of the aircraft subjected to the gust load as realistic as possible, and proposed an algorithm to track back the critical gust profile according to given aircraft characteristics from the viewpoint of preliminary engineering prediction.

  • PDF

Wind pressure measurements on a cube subjected to pulsed impinging jet flow

  • Mason, M.S.;James, D.L.;Letchford, C.W.
    • Wind and Structures
    • /
    • 제12권1호
    • /
    • pp.77-88
    • /
    • 2009
  • A pulsed impinging jet is used to simulate the gust front of a thunderstorm downburst. This work concentrates on investigating the peak transient loading conditions on a 30 mm cubic model submerged in the simulated downburst flow. The outflow induced pressures are recorded and compared to those from boundary layer and steady wall jet flow. Given that peak winds associated with downburst events are often located in the transient frontal region, the importance of using a non-stationary modelling technique for assessing peak downburst wind loads is highlighted with comparisons.

Proposed large-scale modelling of the transient features of a downburst outflow

  • Lin, W.E.;Orf, L.G.;Savory, E.;Novacco, C.
    • Wind and Structures
    • /
    • 제10권4호
    • /
    • pp.315-346
    • /
    • 2007
  • A preceding companion article introduced the slot jet approach for large-scale quasi-steady modelling of a downburst outflow. This article extends the approach to model the time-dependent features of the outflow. A two-dimensional slot jet with an actuated gate produces a gust with a dominant roll vortex. Two designs for the gate mechanism are investigated. Hot-wire anemometry velocity histories and profiles are presented. As well, a three-dimensional, subcloud numerical model is used to approximate the downdraft microphysics, and to compute stationary and translating outflows at high resolution. The evolution of the horizontal and vertical velocity components is examined. Comparison of the present experimental and numerical results with field observations is encouraging.

Downburst versus boundary layer induced wind loads for tall buildings

  • Kim, Jongdae;Hangan, Horia;Eric Ho, T.C.
    • Wind and Structures
    • /
    • 제10권5호
    • /
    • pp.481-494
    • /
    • 2007
  • Downbursts are transient phenomena that produce wind profiles that are distinctly different from synoptic boundary layers. Wind field data from Computational Fluid Dynamics (CFD) simulations of isolated downburst-like impinging jets, are used to investigate structural loads of tall buildings due to these high intensity winds. The base shear forces and base moments of tall buildings of heights between 120 and 250 m produced by downburst winds of various scales are compared with the forces from the equivalent boundary layer gust winds, with matched 10-metre wind velocity. The wind profiles are mainly functions of the size of the downburst and the radial distance from the centre of the storm. Wind forces due to various downburst profiles are investigated by placing the building at different locations relative to the storm center as well as varying the size of the downburst. Overall it is found that downbursts larger than approx. 2,000 m in diameter might produce governing design wind loads above those from corresponding boundary layer winds for tall buildings.

Efficient buffeting analysis under non-stationary winds and application to a mountain bridge

  • Su, Yanwen;Huang, Guoqing;Liu, Ruili;Zeng, Yongping
    • Wind and Structures
    • /
    • 제32권2호
    • /
    • pp.89-104
    • /
    • 2021
  • Non-synoptic winds generated by tornadoes, downbursts or gust fronts exhibit significant non-stationarity and can cause significant wind load effect on flexible structures such as long-span bridges. However, conventional assumptions on stationarity used to evaluate the structural wind-induced vibration are inadequate. In this paper, an efficient frequency domain scheme based on fast CQC method, which can predict non-stationary buffeting random responses of long-span bridges, is presented, and then this approach is applied to evaluate the buffeting response of a long-span suspension bridge located in a complex mountainous wind environment as an example. In this study, the data-driven method based on one available measured wind speed sample is firstly presented to establish non-stationary wind models, including time-varying mean wind speed, time-varying intensity envelope function and uniformly modulated fluctuating spectrum. Then, a linear time-variant (LTV) system based on the proposed scheme can be generally applied to calculate the non-stationary buffeting responses. The effectiveness and accuracy of the proposed scheme are verified through Monte Carlo time domain simulation implemented in ANSYS platform. Also, the transient effect nature of the bridge responses is further illustrated by comparison of the non-stationary, quasistationary and steady-state cases. Finally, buffeting response analysis with traditional stationary treatment (10 min constant mean plus stationary wind fluctuation) is performed to illustrate the importance of the non-stationary characteristics embedded in original wind speed samples.