• Title/Summary/Keyword: transient gene expression

Search Result 201, Processing Time 0.018 seconds

In vitro and in vivo Transient Expression in Insect Cells Mediated by the Cationic Liposome DDAB/DOPE

  • Xiao, Qing-Li;Zhou, Ya-Jing;Zhang, Zhi-Fang;He, Jia-Lu
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.4 no.1
    • /
    • pp.57-62
    • /
    • 2002
  • Cationic liposomes complexed with DNA have been extensively utilized for the delivery of reporter or therapeutic genes both in culture and in vivo. We investigated and determined the optimum conditions of a cationic liposome, composed of dimethyldioctadecy-lammonium bromide (DDAB) and dioleoyl phosphati-dylethanolamine UOPE), mediated a reporter plasmid expressing luciferase into insect cell lines (Sf-21 and Bm-N) and silkworm larvae. Together the data demonstrated that Bombyx mori nuclear polyhedrosis virus (BmNPV) genomic DNA (128 kb) was successfully transfected into Bm-5 cells using this liposome. These results suggest that DDAB/DOPE liposome will be useful as delivery agents for gene transfer to insect cells both in vitro and in vivo.

Changes in Gene Expression in the Rat Hippocampus after Focal Cerebral Ischemia

  • Chung, Jun-Young;Yi, Jae-Woo;Kim, Sung-Min;Lim, Young-Jin;Chung, Joo-Ho;Jo, Dae-Jean
    • Journal of Korean Neurosurgical Society
    • /
    • v.50 no.3
    • /
    • pp.173-178
    • /
    • 2011
  • Objective : The rat middle cerebral artery thread-occlusion model has been widely used to investigate the pathophysiological mechanisms of stroke and to develop therapeutic treatment. This study was conducted to analyze energy metabolism, apoptotic signal pathways, and genetic changes in the hippocampus of the ischemic rat brain. Methods : Focal transient cerebral ischemia was induced by obstructing the middle cerebral artery for two hours. After 24 hours, the induction of ischemia was confirmed by the measurement of infarct size using 2,3,5-triphenyltetrazolium chloride staining. A cDNA microarray assay was performed after isolating the hippocampus, and was used to examine changes in genetic expression patterns. Results : According to the cDNA microarray analysis, a total of 1,882 and 2,237 genes showed more than a 2-fold increase and more than a 2-fold decrease, respectively. When the genes were classified according to signal pathways, genes related with oxidative phosphorylation were found most frequently. There are several apoptotic genes that are known to be expressed during ischemic brain damage, including Akt2 and Tnfrsf1a. In this study, the expression of these genes was observed to increase by more than 2-fold. As energy metabolism related genes grew, ischemic brain damage was affected, and the expression of important genes related to apoptosis was increased/decreased.Conclusion : Our analysis revealed a significant change in the expression of energy metabolism related genes (Atp6v0d1, Atp5g2, etc.) in the hippocampus of the ischemic rat brain. Based on this data, we feel these genes have the potential to be target genes used for the development of therapeutic agents for ischemic stroke.

Expression Patterns of Heat Shock Proteins in Primary Cultured Hepatocytes from Flounder (Paralichthys olivaceus)

  • Kim Woo Jin;Park Doo Won;Park Jung Youn;Kang Ho Sung;Kim Han Do
    • Fisheries and Aquatic Sciences
    • /
    • v.2 no.1
    • /
    • pp.85-92
    • /
    • 1999
  • We examined the expression patterns of heat shock proteins in primary cultured hepatocytes from flounder (Paralichthys olivaceus) exposed to heat shock. The expression of hsp90, hsp70, hsp40, hsp30, and hsp27 was induced and major polypeptides were hsp70, hsp30 and hsp27. Northern blot analysis showed that expression of hsp70 was inhibited by transcriptional inhibitor actinomycin D, suggesting that expression of hsp70 gene is regulated at the transcriptional level. Prolonged exposure of cells to an elevated incubation temperature $(30^{\circ}C)$ induced the transient synthesis of hsp90, hsp70, hsp40, and hsp30 whereas maintenance of cells at a slightly higher incubation temperature $(32^{\circ}C)$ induced the continuous syntheses of these hsps. When cells were incubated at a higher temperatures $(35^{\circ}C\;or\;37^{\circ}C)$, the synthesis of hsps was almost similar to that of hsps in cells exposed to 32't except for the induction of hsp27 synthesis. These results that temperature and incubation time for optimum expression of each hsp during prolonged heat shock are different.

  • PDF

The Homologous Region 3 from Bombyx mori Nucleopolyhedrovirus Enhancing the Transcriptional Activity of Drosophila hsp70 Promoter

  • Tang, Shun-Ming;Yi, Yong-Zhu;Zhou, Ya-Jing;Zhang, Zhi-Fang;Li, Yi-Ren;He, Jia-Lu
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.9 no.2
    • /
    • pp.235-239
    • /
    • 2004
  • Drosophila melanogaster heat shock protein 70 gene promoter (Dhsp70p) is widely used in transgenic insect to drive exogenous gene, and the homologous region 3 from Bombyx mori nucleopolyhedrovirus (BmNPVhr3) functions as an enhancer for several promoters. To test whether BmNPVhr3 can enhance the Dhsp70ps transcriptional activity, the reporter plasmids, which contain the Dhsp70p, the reporter $\beta$-galactosidase gene with SV40 terminator and BmNPVhr3 fragment, are constructed and transfected into the insect cell lines (Bm-N cells and Sf-21 cells) by lipofectin-mediated method. The results from the transient expression assay show that BmNPVhr3 significantly increases transcriptional activity of Dhsp70p both under the normal condition and under the heat-shock treatment, although the effects are significantly different between in Bm-N cells and in sf-21 cells. The enhancing behavior of BmNPVhr3 on the Dhsp70p is in an orientation-independent manner. Meanwhile, the effects of heat-shock treatment on Dhsp70p alone or Dhsp70p/BmNPVhr3 combination present no significant difference, indicating that BmNPVhr3 only enhances the transcriptional activity of Dhsp70p, but cant alter its characteristic of the response to the heat-shock stress. The above results suggest that the Dhsp70p/BmNPVhr3 combination is more effective one to drive exogenous gene for transgene or stable cell expression system in insects.

Regulation of Matrix Metalloproteinase-1 Expression by the Homeodomain Transcription Factor Caudal in Drosophila Intestine (초파리 장조직에서 Caudal 전사조절인자에 의한 matrix metalloproteinase-1 발현 조절)

  • Lee, Shin-Hae;Hwang, Mi-Sun;Choi, Yoon-Jeong;Kim, Young-Shin;Yoo, Mi-Ae
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1600-1607
    • /
    • 2012
  • The matrix metalloproteinase (MMP) family plays essential roles in physiological processes such as embryonic development, angiogenesis, wound healing, and tissue homeostasis as a consequence of MMPr capacity for breaking down many types of extracellular matrix proteins. Imbalanced regulation of MMP expression can also lead to pathological conditions such as tumor progression. We recently reported that the Drosophila Mmp1 gene is highly expressed in the digestive tract and is required for the maintenance of intestinal homeostasis such as by restriction of uncontrolled intestinal stem cell proliferation. However, the regulatory mechanisms of MMP gene expression in the intestine remain unclear. In this study, we determined that the expression of Mmp1 is regulated by the homeodomain transcription factor Caudal. Experiments using the targeted expression of Caudal under the regulation of Gal4-UAS system indicated that endogenous Caudal is required for the Mmp1 gene expression in the adult Drosophila intestine and that exogenous Caudal induces Mmp1 expression. Transient transfection experiments indicated that Caudal can activate the promoter activity of Mmp1 and that several putative Caudal binding sites in the 5'-flanking region of the Mmp1 gene may be critical to the upregulation by Caudal. Our data suggest that Mmp1 is one of the target genes of Caudal in physiological normal condition and in tumorigenesis.

Activation of Barley S-Adenosylmethionine Synthetase1 Gene Promoter in Response to Phytohormones and Abiotic Stresses

  • Kim, Jae-Yoon;Kim, Dae-Yeon;Jung, Je-Hyeong;Hong, Min-Jeong;Heo, Hwa-Young;Johnson, Jerry W.;Kim, Tae-Ho;Seo, Yong-Weon
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.50-56
    • /
    • 2007
  • Barley S-adenosylmethionine synthetase1 gene, which was differentially expressed in seed development of extra early barley, was regulated by the phytohormones and abiotic stresses. In order to identify the regulation regions which were involved in transcriptional control of the phytohormones and abiotic stresses, we isolated 1459 bp fragment of HvSAMS1 gene promoter using genome walking strategy and deletion series were constructed. Deleted upstream fragments(-1459, -1223, -999, -766, -545, -301 bp) were fused to the GUS reporter gene and evaluated via Agrobacterium-mediated transient expression assay. Increased GUS activity of HvSMAS1 promoter -301/GUS construct under each of NaCl, $GA_3$, ABA and ethylene application was found. However, GUS activity was negligible in the leaves transformed with the HvSMAS1 promoter(-1459, -1223, -999, -766 and -545)/GUS constructs. No significant induction of GUS activity was observed for the ethionine and spermidine treatments. In order to locate promoter sequence of the HvSAMS1 gene that was critical for the activation of gene expression, deletion and addition promoter derivatives(+, includes 43 bp of 5' ORF) of the HvSAMS1 gene fused to the GUS reporter gene were applied. The tobacco leaves which harbored the additional HvSAMS1 promoter(-1459+, -1459 to -546, -545+ and -301+)/GUS construct did not significantly induce GUS activity as compared to the HvSAMS1 promoter(-1459, -545 and -301)/GUS constructs under each of NaCl, ABA and $GA_3$ treatment. However, the GUS activity was high in the tobacco leaves which harboring the -211 to -141 regions of the HvSAMS1 promoter. This result suggested that HvSAMS1 gene expression might be regulated by this region(from -211 to -141).

  • PDF

A Technique of Segment Expression and RNA Interference (SERI) Reveals a Specific Physiological Function of a Cysteine-Rich Protein Gene Encoded in Cotesia plutellae Bracovirus

  • Barandoc, Karen;Kim, Yong-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.6
    • /
    • pp.610-615
    • /
    • 2009
  • As a provirus, polydnavirus has a segmented DNA genome on chromosome(s) of host wasp. It contains several genes in each segment that presumably play critical roles in regulating physiological processes of target insect parasitized by the wasp. A cysteine-rich protein 1 (CRP1) is present in the polydnavirus Cotesia plutellae bracovirus (CpBV) genome, but its expression and physiological function in Plutella xylostella parasitized by the viral host C. plutellae is not known. This CpBV-CRP1 encoding 189 amino acids with a putative signal peptide (20 residues) was persistently expressed in parasitized P. xylostella with gradual decrease at the late parasitization period. Expression of CpBV-CRP1 was tissue-specific in the fat body/epidermis and hemocyte, but not in the gut. Its physiological function was analyzed by inducing transient expression of a CpBV segment containing CpBV-CRP1 and its promoter, which caused significant reduction in hemocyte -spreading and delayed larval development. When the treated larvae were co-injected with double-stranded RNA of CpBV-CRP1, the expression of CpBV-CRP1 disappeared, whereas other genes encoded in the CpBV segment was expressed. These co-injected larvae significantly recovered the hemocyte-spreading capacity and larval development rate. This study reports that CpBV-CRP1 is expressed in P. xylostella parasitized by C. plutellae and its physiological function is to alter the host immune and developmental processes.

Expressional Analysis of Glucose Transporter Isoforms in the Efferent Ductules of Male Sprague Dawley Rat during Postnatal Development

  • Seo, Hee-Jung;Son, Chan-Wok;Lee, Ki-Ho
    • Reproductive and Developmental Biology
    • /
    • v.33 no.4
    • /
    • pp.211-216
    • /
    • 2009
  • A cell frequently utilizes glucose as a fuel of energy and a major substrate of lipid and protein syntheses. A regulation of glucose movement into and out of the cells is precisely controlled by cooperative works of passive and sodium-dependent active processes. At least 13 glucose cotransporter (Slc2a, GLUT) isoforms involve in passive movement of glucose in cells. The efferent ductules (EDs) play in a number of important functions for maintenance of male fertility. In the present study, using real-time PCR analysis, we determined gene expression of five Slc2a isoforms in the EDs. In addition, we compared expression levels of these Slc2a isoforms according to postnatal development ages, 1 week, 2 weeks, 1 month, and 3 months. Results from the current study showed that expression of Slc2a1, Slc2a3, and Slc2a5 mRNAs reached the highest levels at 1 month of age, followed by a transient decrease at 3 months of age. In addition, the level of Slc2a4 mRNA reminded at steady until 1 month of age and was significantly reduced at 3 months of age, whereas the highest level of Slc2a 8 mRNA was detected at 2 weeks of age. Data from the present study indicate a differential expression of various Slc2a isoforms in the ED according to postnatal ages. Thus, it is believed that glucose movement through the epithelial cells in the ED would be regulated by the coordinated manner among Slc2a isoforms expressed at a given age.

Suppression of CYP1A1 Expression by Naringenin in Murine Hepa-1c1c7 Cells

  • Kim, Ji-Young;Han, Eun-Hee;Shin, Dong-Weon;Jeong, Tae-Cheon;Lee, Eung-Seok;Woo, Eun-Rhan;Jeong, Hye-Gwang
    • Archives of Pharmacal Research
    • /
    • v.27 no.8
    • /
    • pp.857-862
    • /
    • 2004
  • Naringenin, dietary flavonoid, is antioxidant constituents of many citrus fruits. In the present study, we investigated the effect of naringenin on 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible CYP1 A 1 gene expression in mouse hepatoma Hepa-1c1c7 cells. Naringenin alone did not affect CYP1A1-specific 7-ethoxyresorufin O-deethylase (EROD) activity. In contrast, the TCDD-inducible EROD activities were markedly reduced upon concomitant treatment with TCDD and naringenin in a dose dependent manner. TCDD-induced CYP1A1 mRNA level was also markedly suppressed by naringenin. A transient transfection assay using dioxin-response element (DRE)-linked luciferase and electrophoretic mobility shift assay revealed that naringe-nin reduced transformation of the aryl hydrocarbons receptor(AhR) to a form capable of specif-ically binding to the DRE sequence in the promoter of the CYP1A1 gene. These results suggest the down regulation of the CYP1A1 gene expression by either naringenin in Hepa-1c1c7 cells might be antagonism of the DRE binding potential of nuclear AhR.

An efficient protocol for the production of transgenic Alstroemeria plants via particle bombardment

  • Kim, Jong Bo
    • Journal of Plant Biotechnology
    • /
    • v.47 no.1
    • /
    • pp.66-72
    • /
    • 2020
  • Alstroemeria plants were transformed by using an improved particle-gun-mediated transformation system. Friable embryogenic callus (FEC) induced from the leaves with axil tissues of Alstroemeria plant was used as the target tissue. Also, FEC was transformed with the bar gene was used as a selectable marker. In the case of plasmid pAHC25, 7.5% of the twice-bombarded FEC clumps showed blue foci, whereas the clumps with single bombardment showed only 2.3%. Additionally, a 90° rotation with double bombardment led to a higher frequency (6 times) of luciferase gene expression in PBL9780 than the control treatment. After 8 weeks of bombardment, more than 60 independent transgenic lines were obtained for pAHC25 and nearly 150 independent transgenic lines were obtained for PBL9780, all of which were resistant to PPT and demonstrated either GUS or luciferase activity. Regarding effect of osmotic treatment (0.2 M mannitol) with 7 different periods, the highest transient gene expression was obtained in 8 h before and 16 h after transformation in both pAHC25 and PBL9780. Compared with the control, at least three times more GUS foci and photons were observed in this treatment. With respect to different combinations of mannitol and sorbitol with 8 h before and 16 h after transformation, high numbers of transient and stable transgene expressions were observed in both 0.2 M mannitol and 0.2 M sorbitol used in the osmotic pre-culture. This combination showed the highest transformation efficiency in both pAHC25 (8.5%) and PBL9780 (14.5%). In the control treatment, only 10% of the FEC clumps produced somatic embryos. However, by using 0.2 M mannitol and 0.2 M sorbitol, the frequency of somatic embryos increased to 36.5% (pAHC25) and 22.9% (PBL9780). Of the somatic embryos produced, at least 60% germinated. Approximately 100 somatic embryos from these 210 independent transgenic lines from 2 plasmids developed into shoots, which were then transferred to the greenhouse. PCR analysis confirmed the presence of the bar gene. This is the report on the production of transgenic Alstroemeria plants by using particle bombardment with a high efficiency, thereby providing a new alternative for the transferring of gene of interests in Alstroemeria in the breeding program in the future.