• Title/Summary/Keyword: transient CFD(Computational Fluid Dynamics)

Search Result 71, Processing Time 0.024 seconds

Case study on Remodeling Clearwell Hydraulic Structure using Transient CFD Simulation Technique (Transient CFD 모사기법을 이용한 정수지 최적설계 사례연구)

  • Kim, Seon-Jin;Kim, Seong-Su;Park, No-Suk;Cha, Min-Whan;Wang, Chang-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.425-432
    • /
    • 2010
  • From the results of tracer test for the existing clearwell in Y water treatment plant, $T_{10}$ and T10/T were calculated as 150 min and 0.24, respectively. Therefore it required the modification schemes for improving hydraulic efficiency, surrogated by $T_{10}$ and $T_{10}$/T, and disinfection performance. In this study, using transient CFD(Computational Fluid Dynamics) simulation technique, tracer tests on dynamic condition for the suggested schemes were simulated. From the results of simulation, it was revealed that 8~6 baffles are necessary to guarantee the disinfection ability in the existing clearwell. Also, installing orifice baffle in the vicinity of inlet could increase plug flow fraction within clearwell.

Study on Methodology for Reducing Dead Zone Flow within Chlorine Contactor Installing Porous Baffles (유공벽을 이용한 우류식 염소접촉조 사류 저감 방안 연구)

  • Park, Hyun-Ho;Park, No-Suk;Cha, Min-Whan;Kim, Sa-Dong;Won, Chan-Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.5
    • /
    • pp.519-525
    • /
    • 2010
  • From the results of tracer test for the existing chlorine contactor in Y water treatment plant, $T_{10}$ and $T_{10}$/T were calculated as 130 min and 0.16, respectively. Therefore it required the modification schemes for improving hydraulic efficiency, surrogated by T10 and $T_{10}$/T, and disinfection performance. In this study, in order to reduce dead zone within contactor, the installation of porous baffles in the near of each corner was suggested and verified using transient CFD(Computational Fluid Dynamics) simulation technique and tracer tests on dynamic condition. From the results of simulation and tracer tests, it was revealed that porous baffles installed have been effective to reduce dead zone within contactor, and increase plug flow fraction.

Aerodynamic shape optimization of a high-rise rectangular building with wings

  • Paul, Rajdip;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • v.34 no.3
    • /
    • pp.259-274
    • /
    • 2022
  • The present paper is focused on analyzing a set of Computational Fluid Dynamics (CFD) simulation data on reducing orthogonal peak base moment coefficients on a high-rise rectangular building with wings. The study adopts an aerodynamic optimization procedure (AOP) composed of CFD, artificial neural network (ANN), and genetic algorithm (G.A.). A parametric study is primarily accomplished by altering the wing positions with 3D transient CFD analysis using k - ε turbulence models. The CFD technique is validated by taking up a wind tunnel test. The required design parameters are obtained at each design point and used for training ANN. The trained ANN models are used as surrogates to conduct optimization studies using G.A. Two single-objective optimizations are performed to minimize the peak base moment coefficients in the individual directions. An additional multiobjective optimization is implemented with the motivation of diminishing the two orthogonal peak base moments concurrently. Pareto-optimal solutions specifying the preferred building shapes are offered.

NUMERICAL SIMULATION OF PRESSURE CHANGE INSIDE CABIN OF A TRAIN PASSING THROUGH A TUNNEL (터널을 통과하는 열차의 객실 내 압력 변동 해석)

  • Kwon, H.B.;Yun, S.H.;Nam, S.W.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.23-28
    • /
    • 2012
  • The pressure transient inside the passenger cabin of high-speed train has been simulated using computational fluid dynamics(CFD) based on the axi-symmetric Navier-Stokes equation. The pressure change inside a train have been calculated using first order difference approximation based on a linear equation between the pressure change ratio inside a train and the pressure difference of inside and outside of the train. The numerical results have been assessed for the KTX train passing through a 9km long tunnel of Wonju-Kangneung line at the speed of 250km/h assuming that the train is satisfying the train specification for airtightness required by the regulation.

Assessment of the Pressure Transient Inside the Passenger Cabin of High-speed Train Using Computational Fluid Dynamics (전산유체역학을 이용한 고속철도차량 객실 내 압력변동 평가)

  • Kwon, Hyeok-Bin;Nam, Sung-Won;Kwak, Jong-Hyun
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.65-71
    • /
    • 2009
  • The pressure transient inside the passenger cabin of high-speed train has been assessed using computational fluid dynamics (CFD) based on the axi-symmetric Navier-Stokes equation. The pressure change inside a train have been calculated using first order difference approximation based on a linear equation between the pressure change ratio inside a train and the pressure difference of inside and outside of the train. The numerical results show that the pressure change inside the new Korean high-seed train passing through a tunnel of Seoul-Busan high-speed line at the speed of 330km/h satisfied well the Korean regulation for pressure change inside a passenger cabin if the train is satisfying the train specification for airtightness required by the regulation.

Examining the effects of wall roughness on the hydraulic characteristics of chlorine contactor using Transient CFD Simulation Technique (벽면 조도계수가 염소 접촉조 수리특성에 미치는 영향 연구)

  • Chae, Seon-Ha;Lim, Young-Taek;Cha, Min-Whan;Kim, Jong-Oh
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.759-765
    • /
    • 2011
  • In this study, in order to investigate the effects of wall roughness on the hydraulic characteristics of chlorine contactor, CFD simulation and tracer tests were conducted for both of reactors whose walls are made of concrete and lined with PE(Poly Ethylene). In the case of walls contacted with water being lined with PE (relatively lower roughness), the flow within reactor is closer to plug flow than that in the case of concrete walls (relatively higher roughness). Especially, the longer tail of C-curve from the results of transient CFD simulation can tell that Morill index in the case concrete walls is much higher than that in the case of walls be lined with lower roughness material.

Numerical Simulation of Pressure Change inside Cabin of a Train Passing through a Tunnel (터널을 통과하는 열차의 객실 내 압력 변동 해석)

  • Kwon, H.B.;Yoon, S.H.;Nam, S.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.337-342
    • /
    • 2011
  • The pressure transient inside the passenger cabin of high-speed train has been simulated using computational fluid dynamics(CFD) based on the axi-symmetric Navier-Stokes equation. The pressure change inside a train have been calculated using first order difference approximation based on a linear equation between the pressure change ratio inside a train and the pressure difference of inside and outside of the train. The numerical results have been assessed for the KTX train passing through a 9km long tunnel of Wonju-Kangneung line at the speed of 250km/h assuming that the train is satisfying the train specification for airtightness required by the regulation.

  • PDF

Transient Simulation of Solid/Liquid Two-Phase Flow in a Stirred Tank (교반기 내부의 고체/액체 다상 유동의 비정상상태 해석)

  • Kim, Chi-Gyeom;Yong, Suk-Jin;Won, Chan-Shik;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.236-239
    • /
    • 2008
  • In the present study, a transient glass particle distribution in a stirred solid/liquid mixer was investigated using computational fluid dynamics(CFD). The flow patterns and solid concentaration distriburion in a solid/liquid mixer formed by pitched paddle and baffles were predicted. The numerical results were compared to experimental data from the available literature. Eulerian multi-phase model was used to investigate the influence of the density of solid particle on the same impeller speed. A good agreement was obtained between the experimental data and simulation results.

  • PDF

Computational Structural Dynamic Analysis of a Gyrocopter Using CFD Coupled Method (CFD기법을 연계한 자이로콥터의 전산구조동역학 해석)

  • Kim Hyun-Jung;Jung Se-Un;Park Hyo-Keun;Yang Chang-Hak;Kim Dong-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.295-302
    • /
    • 2006
  • In this study, computational structural dynamic analyses of a gyrocopter have been conducted considering unsteady dynamic hub-loads due to rotating blades. 3D CATIA models with detailed mechanical parts we constructed and virtually assembled into the complete aircraft configuration. The dynamic loading generated by rotating blades in the forward flight condition are calculated by a commercial computational fluid dynamics (CFD) code such as FLUENT. Modal based transient and frequency response analyses are used to efficiently investigate vibration characteristics of the gyrocopter. Free vibration analysis results for different fuel and pilot conditions, frequency responses and transient responses for critical flight conditions are also presented in detail.

Performance Analysis of a Micro-Hydro Pelton Turbine for the Osmotic Power Generation (삼투압발전용 마이크로 펠턴터빈의 성능해석)

  • Oh, Hyoung-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.3
    • /
    • pp.18-22
    • /
    • 2011
  • This paper presents the transient performance analysis of a micro-hydro Pelton turbine for the osmotic power generation using the commercially available computational fluid dynamics (CFD) code, ANSYS CFX. The detailed flow field in the micro Pelton turbine with a single-jet is investigated by the CFD code adopted in the present study. Predicted characteristic curves agree fairly well with measured data for a prototype Pelton turbine over the normal operating conditions. The computational analysis method presented herein can be effectively applied to the hydraulic design optimization process of general purpose Pelton turbine runners.