• Title/Summary/Keyword: transgenic quail

Search Result 7, Processing Time 0.026 seconds

Non-Viral Transgenesis via Direct In Ovo Lipofection in Quail (비바이러스 In Ovo 직접주입법에 의한 메추리 형질전환 시스템)

  • Park, Tae Sub;Han, Jae Yong
    • Korean Journal of Poultry Science
    • /
    • v.42 no.3
    • /
    • pp.239-245
    • /
    • 2015
  • Transgenic animals have been widely used for developmental biology studies, as disease models, and even in industry such as transgenic bioreactor animals. For transgenic birds, quail has the great advantages of small body size, short generation time, and frequent egg production. To date, retroviral or lentiviral transduction has been used to generate transgenic quail for various purposes. However, the efficiency of transgenic offspring production with these methods is relatively low and viral vector usage has safety issues. Unfortunately, non-viral transgenesis has not been established in quail due to a deficiency of stem cell and germ cell culture systems. In this study, we established a direct in ovo lipofection method that could be used to create transgenic quail without germline-competent cells or viruses. To optimize the injection stage during embryo development, the liposome complex (containing piggyBacCMV-GFP and transposase plasmids) was introduced into an embryonic blood vessel at 50 hr, 55 hr or 60 hr. GFP expression was detected in various tissues (heart, kidney, liver and stomach) on day 12 of incubation under a fluorescence microscope. Additionally, GFP-positive cells were detected in the recipient embryonic gonads. In conclusion, the direct in ovo lipofection method with the piggyBac transposon could be an efficient and useful tool for generating transgenic quail.

Avian Somitic Cell Chimeras Using Surrogate Eggshell Technology

  • Mozdziak, Paul E.;Hodgson, Dee;Petitte, James N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.6
    • /
    • pp.801-806
    • /
    • 2008
  • A classical technique to study somitic cell fate is to employ the cross-transplantation of quail somites into a chick host. The densely stained nucleoli of the quail cells makes it possible to assess the fate of the donor quail cells in the chick host. Classical somite transplantation techniques have been hampered by the necessity of a small opening in the chick eggshell, difficulty in hatching the offspring and interspecies post-hatch graft rejection. With the advent of transgenic chicken technology, it is now possible to use embryos from transgenic chickens expressing reporter genes in somite cross-transplantation techniques to remove any possibility of interspecies graft rejection. This report describes using a surrogate eggshell system in conjunction with transgenic chick:chick somitic cell cross-transplantation to generate viable chimeric embryos and offspring. Greater than 40% of manipulated embryos survive past 10 days of incubation, and ~80% of embryos successfully cultured past 10 days of incubation hatched to produce viable offspring.

Application of Quail Model for Studying the Poultry Functional Genomics (가금 기능유전체 연구를 위한 메추리 모델의 활용)

  • Shin, Sangsu
    • Korean Journal of Poultry Science
    • /
    • v.44 no.2
    • /
    • pp.103-111
    • /
    • 2017
  • The quail (Coturnix japonica) has been used as a model animal in many research fields and its application is still expanding in other fields. Compared to the chicken, the quail is quicker to reach sexually maturity, has short generation intervals, is easy to handle, requires less space and feed, and is sturdy. In addition, it produces many eggs and the research tools developed for chicken can be applied directly to quail or with some modifications. Due to recent advances in next-generation sequencing, abundant sequence data for the quail genome and transcripts have been generated. These sequence data are valuable sources for studying functional genomics using quail, which is one of the model animal used to investigate gene function and networks. Although there are some obstacles to be removed, the quail is the best optimized model to study the functional genomics of poultry. In many research fields, functional genomics study using the quail model will provide the best opportunity to understand the phenomena and principles of life. We review why, among many other birds, the quail is the best model for studying poultry functional genomics.

Development of complete Culture System for Quail Embryos and Its Application for Embryo Manipulation

  • Ono, T.
    • Korean Journal of Poultry Science
    • /
    • v.28 no.2
    • /
    • pp.155-163
    • /
    • 2001
  • Gene and cell transfer technique will serve as a powerful tool for the genetic improvement of the poultry and to yield useful products. For avian transgenesis, Japanese quail may serve as an excellent animal model because of its small body size and fast growth rate. Recent progress was described on the manipulation of quail embryos such as the introduction of foreign genes and cells, and the subsequent culturing of the manipulated embryos yielding hatchlings. Intraspecific donor-derived offspring have been available in quail, however, further investigation will be required to obtain interspecific offspring with the aim of rescuing endangered species. Trans genesis will also be useful for improving the profitability and quality of poultry stocks and for developing stocks with novel uses. Considerable progress should soon be made toward the production of transgenic poultry. The key feature of the procedure described here is that embryos are initially taken out from the shell for ease of manipulation and then placed back in culture in addition to various operations midway during culture.

  • PDF

DNA methyltransferase 3a is Correlated with Transgene Expression in Transgenic Quails

  • Jang, Hyun-Jun;Kim, Young-Min;Rengaraj, Deivendran;Shin, Young-Soo;Han, Jae-Yong
    • Journal of Animal Science and Technology
    • /
    • v.53 no.3
    • /
    • pp.269-274
    • /
    • 2011
  • DNA methyltransferases (DNMTs) are closely associated with the epigenetic change and the gene silencing through the regulation of methylation status in animal genome. But, the role of DNMTs in transgene silencing has remained unclear. So, we examined whether the knockdown of DNMT influences the reactivation of transgene expression in the transgenic quails. In this study, we investigated the expression of DNMT3a, and DNMT3b in blastoderm, quail embryonic fibroblasts (QEFs) and limited embryonic tissues such as gonad, kidney, heart and liver of E6 transgenic quails (TQ2) by RT-PCR. We further analyzed the expression of DNMT3a at different stages of whole embryos during early embryonic development by qRT-PCR. DNMT3a expression was detected in all test samples; however, it showed the highest expression in E6 whole embryo. Embryonic fibroblasts collected from TQ2 quails were treated with two DNMT3a-targeted siRNAs (siDNMT3a-51 and siDNMT3a-88) for RNA interference assay, and changes in expression were then analyzed by qRT-PCR. The siDNMT3a-51 and siDNMT3a-88 reduced 53.34% and 64.64% of DNMT3a expression in TQ2 QEFs, respectively. Subsequently the treatment of each siRNA reactivated enhanced green fluorescent protein (EGFP) expression in TQ2 (224% and 114%). Our results might provide a clue for understanding the DNA methylation mechanism responsible for transgenic animal production and stable transgene expression.

Efficient transgene expression system using a cumate-inducible promoter and Cre-loxP recombination in avian cells

  • Park, Tae Sub;Kim, Si Won;Lee, Jeong Hyo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.6
    • /
    • pp.886-892
    • /
    • 2017
  • Objective: Transgenic technology is widely used for industrial applications and basic research. Systems that allow for genetic modification play a crucial role in biotechnology for a number of purposes, including the functional analysis of specific genes and the production of exogenous proteins. In this study, we examined and verified the cumate-inducible transgene expression system in chicken DF1 and quail QM7 cells, as well as loxP element-mediated transgene recombination using Cre recombinase in DF1 cells. Methods: After stable transfer of the transgene with piggyBac transposon and transposase, transgene expression was induced by an appropriate concentration of cumate. Additionally, we showed that the transgene can be replaced with additional transgenes by co-transfection with the Cre recombinase expression vector. Results: In the cumate-GFP DF1 and QM7 cells, green fluorescent protein (GFP) expression was repressed in the off state in the absence of cumate, and the GFP transgene expression was successfully induced in the presence of cumate. In the cumate-MyoD DF1 cells, MyoD transgene expression was induced by cumate, and the genes controlled by MyoD were upregulated according to the number of days in culture. Additionally, for the translocation experiments, a stable enhanced green fluorescent protein (eGFP)-expressing DF1 cell line transfected with the loxP66-eGFP-loxP71 vector was established, and DsRed-positive and eGFP-negative cells were observed after 14 days of co-transfection with the DsRed transgene and Cre recombinase indicating that the eGFP transgene was excised, and the DsRed transgene was replaced by Cre recombination. Conclusion: Transgene induction or replacement cassette systems in avian cells can be applied in functional genomics studies of specific genes and adapted further for efficient generation of transgenic poultry to modulate target gene expression.