• Title/Summary/Keyword: transgenic embryo

Search Result 195, Processing Time 0.021 seconds

성장관련 유전자를 이용한 형질전화토끼의 생산

  • 진동일
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2000.11a
    • /
    • pp.46-54
    • /
    • 2000
  • Transgenic rabbits were produced by DNA microinjection using growth hormone receptor (GHR) and IGF-1 receptor (IGF-1R) genes. Overall efficiencies for production of transgenic rabbits were 3.2% and 3.1% in GHR and IGF-1R genes, respectively. Founder rabbits transmitted transgenes to their progenies through medelian fashion. Growth rate in GHR and ICF-1R transgenic rabbits was faster than non-transgenic rabbits. Transgenic rabbits grew larger (25% and 15% increase in body weight of GHR and IGF-1R transgenic rabbits, respectively) than non-transgenic rabbits and organ weight of transgenic rabbits increased, suggesting that GHR and IGF-1 genes affects growth rates in transgenic rabbits.

  • PDF

Embryo transfer in Korean Native Black Goat;Embryo recovery and transfer for the production of transgenic goat (한국재래흑염소 수정란의 이식;형질전환 흑염소 생산을 위한 수정란의 채취와 이식)

  • Shin, Sang-Tae
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2000.05a
    • /
    • pp.64-75
    • /
    • 2000
  • During the last three decades considerable advances has been made in goat embryo production and transfer technology. The Korean native black goat is the most useful domestic ruminant in this country for biological investigation and application because it has a lot of merits such as relatively short generation period (1 vs 2 year for a cow), easy of handling, well adaptation, high fertility, convenient and inexpensive. This article covers the methods of superovulation, estrus synchronization, embryo collection and transfer techniques, pregnancy diagnosis and subsequent pregnancy and kidding rates for the production of transgenic Korean native black goats. More than one hundred goat kids have been produced as a result of our transgenic goat project via microinjection of foreign gene into pronuclei, in vitro culture, transfer of various stages of fresh and frozen-thawed microinjected embryos into oviducts or uteri of recipient does. We have got two transgenic goats carrying a transgene targeting the expression of recombinant human granulocyte colony stimulating factor (hG-CSF) to the mammary gland so far. Since collection and transfer of embryos in this species is usually accomplished by laparotomy, exteriorization of the reproductive tract for surgical embryo collection leads to the formation of post-operative adhesions. Nonsurgical or laparoscopic technique to reduce adhesions from repeated surgeries has great advantages in improving embryo production and transfer especially from valuable donors. We will discuss this later.

  • PDF

Embryo transfer in Korean Native Black Goat: Embryo recovery and transfer for the production of transgenic goat (한국재래흑염소 수정란의 이식: 형질전환 흑염소 생산을 위한 수정란의 채취와 이식)

  • 신상태
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2000.06a
    • /
    • pp.64-75
    • /
    • 2000
  • During the last three decades considerable advances has been made in goat embryo production and transfer technology. The Korean native black goat is the most useful domestic ruminant in this country for biological investigation and application because it has a lot of merits such as relatively short generation period(1 vs 2 year for a cow), easy of handling, well adaptation, high fertility, convenient and inexpensive. This article covers the methods of superovulation, estrus synchronization, embryo collection and transfer techniques, pregnancy diagnosis and subsequent pregnancy and kidding rates for the production of transgenic Korean native black goats. More than one hundred goat kids have been produced as a result of our transgenic goat project via microinjection of foreign gene into pronuclei, in vitro culture, transfer of various stages of fresh and frozen-thawed microinjected embryos into oviducts or uteri of recipient does. We have got two transgenic goats carrying a transgene targeting the expression of recombinant human granulocyte colony stimulating factor(hG-CSF) to the mammary gland so far. Since collection and transfer of embryos in this species is usually accomplished by laparotomy, exteriorization of the reproductive tract for surgical embryo collection leads to the formation of post-operative adhesions. Nonsurgical or laparoscopic technique to reduce adhesions from repeated surgeries has great advantages in improving embryo production and transfer especially from valuable donors. We will discuss this later.

  • PDF

Establishment of an Efficient System for the Production of Transgenic Somatic Cell Nuclear Transfer Embryos

  • Cho, J.K.;Bhuiyan, M.M.U.;Jang, G.;Park, E.S.;Chang, K.H.;Park, H.J.;Lim, J.M.;Kang, S.K.;Lee, B.C.;Hwang, W.S.
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.75-75
    • /
    • 2002
  • The present study was conducted for the production of transgenic cloned cows by somatic cell nuclear transfer (SCNT) that secrete human prourokinase into milk. To establish an efficient production system for bovine transgenic SCNT embryos, the offset was examined of various conditions of donor cells including cell type, size, and passage number on the developmental competence of transgenic SCNT embryos. An expression plasmid far human prourokinase (pbeta-ProU) was constructed by inserting a bovine beta-casein promoter, a green fluorescent protein (GFP) marker gene, and a human prourokinase target gene into a pcDNA3 plasmid. Three types of bovine somatic cells including two adult cells (cumulus cells and ear fibroblasts) and fetal fibroblasts were prepared and transfected using a lipid-meidated method. In Experiment 1, developmental competence and rates of GFP expression in bovine transgenic SCNT embryos reconstructed with cumulus cells were significantly higher than those from fetal and ear fibroblasts. In Experiment 2, the effect of cellular senescence in early (2 to 4) and late (8 to 12) passages was investigated. No significant differences in the development of transgenic SCNT embryos were observed. In Experient 3, different sizes of GFP-expressing transfected cumulus cells [large (>30 ${\mu}{\textrm}{m}$) or small cell (<30 ${\mu}{\textrm}{m}$)] were used for SCNT. A significant improvement in embryo development and GFP expression was observed when small cumulus cells were used for SCNT. Taken together, these results demonstrate that (1) adult somatic cells could serve as donor cells in transgenic SCNT embryo production and cumulus cells with small size at early passage were the optimal cell type, and (2) transgenic SCNT embryos derived from adult somatic cells have embryonic development potential.

  • PDF